综述

空中目标传感器管理方法综述

  • 闫涛 ,
  • 韩崇昭 ,
  • 张光华
展开
  • 1. 西安交通大学 电信学院 综合自动化研究所, 西安 710049;
    2. 西安交通大学 智能网络与网络安全教育部重点实验室, 西安 710049

收稿日期: 2018-04-16

  修回日期: 2018-06-29

  网络出版日期: 2018-07-04

基金资助

国家自然科学基金(61573020,61573271);陕西省自然科学基金(2017JQ6049);中央高校基本科研业务费(xjj2018020)

An overview of sensor management approaches for aerial target

  • YAN Tao ,
  • HAN Chongzhao ,
  • ZHANG Guanghua
Expand
  • 1. Institute of Integrated Automation, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    2. MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2018-04-16

  Revised date: 2018-06-29

  Online published: 2018-07-04

Supported by

National Natural Science Foundation of China (61573020, 61573271); Natural Science Foundation of Shaanxi Province (2017JQ6049); Fundamental Research Funds for the Central Universities (xjj2018020)

摘要

为了避免对有限的多传感器资源的无序竞争和使用,多传感系统通常在一定约束条件下工作。传感器管理即是对传感器系统的自由度进行控制,以满足实际的约束条件并实现既定的任务目标,被大规模地应用于诸如区域目标监视、空中交通管制等各种军用与民用领域。首先,给出了传感器管理系统的概念定义与基本目标;然后,对过去及现在各种空中目标传感器管理方面的理论、方法以及应用进行了全面的综述与深入的分析,并对传感器管理领域现存的问题提出了解决思路和方法;最后,对该领域下一步的发展方向做出了展望。

本文引用格式

闫涛 , 韩崇昭 , 张光华 . 空中目标传感器管理方法综述[J]. 航空学报, 2018 , 39(10) : 22209 -022209 . DOI: 10.7527/S1000-6893.2018.22209

Abstract

To prevent the simultaneous use of limited resources, a multi-sensor system typically operates under resource constraints. Sensor management approaches change the freedom degree of system to actively manage these resources during its deployment in reaction to previous measurements. This approach has been widely used in a variety of military and civilian applications, e.g. target region surveillance and air traffic management. First, the definition and fundamental objectives of sensor management are demonstrated in this paper. Then, an overview of the theories, methods and applications of sensor management for aerial target from the past to the present is illustrated, and some constructive ideas for tackling the obstacles of the latest approaches are provided. Finally, some future challenges and opportunities are illustrated.

参考文献

[1] MONAHAN G E. A survey of partially observable Markov decision processes:Theory, models and algorithms[J]. Management Science, 1982, 28(1):1-16.
[2] CASSANDRA A R. A survey of POMDP applications[C]//Proceedings of AAAI Fall Symposium on Planning with Partially Observable Markov Decision Processes. Palo Alto, CA:AAAI, 1998:17-24.
[3] NG G W, NG K H. Sensor management-What, why and how[J]. Information Fusion, 2000, 1(2):67-75.
[4] HERO A, CASTANON D A, COCHRAN D, et al. Foundations and applications of sensor management[M]. New York:Springer, 2008.
[5] COCHRAN D. Waveform-agile sensing:Opportunities and challenges[C]//Proceedings of IEEE International Conference on Acoustics, Speech & Signal Processing. Piscataway, NJ:IEEE Press, 1995:877-880.
[6] LIU X X, SHEN S L, PAN Q. A survey of sensor management and methods[J]. Acta Electronica Sinica, 2002, 30(3):394-398.
[7] KREUCHER C. An information-based approach to sensor resource allocation[D]. Michigan:University of Michigan, 2005.
[8] RANGRAJAN R. Resource constrained adaptive sensing[D]. Michigan:University of Michigan, 2006.
[9] BLATT D. Performance evaluation and optimization for inference systems:Model uncertainty, distributed implementation, and active sensing[D]. Michigan:University of Michigan, 2007.
[10] WILLIAMS J L. Information theoretic sensor management[D]. Cambridge, MA:Massachusetts Institute of Technology, 2007.
[11] HUBER M. Probabilistic framework for sensor management[D]. KIT Scientific, 2009.
[12] JENKINS K L. Fast adaptive sensor management for feature-based classification[D]. Boston, MA:Boston University, 2010.
[13] 刘先省. 传感器管理方法研究[D]. 西安:西北工业大学, 2000. LIU X X. A study of sensor management[D]. Xi'an:Northwestern Polytechnical University, 2000(in Chinese).
[14] 周文辉. 相控阵雷达及组网跟踪系统资源管理技术研究[D]. 长沙:国防科学技术大学, 2004. ZHOU W H. Research on resource management technology for phased array radar and its network in tracking system[D]. Changsha:National University of Defense Technology, 2004(in Chinese).
[15] 刘严岩. 多传感器数据融合中几个关键技术的研究[D]. 合肥:中国科学技术大学, 2006. LIU Y Y. Research on several key technologies of multi-sensor data fusion[D]. Hefei:University of Science and Technology of China, 2006(in Chinese).
[16] 卢建斌. 相控阵雷达资源优化管理的理论与方法[D]. 长沙:国防科学技术大学, 2007. LU J B. Theory and method of resource optimization and management for phased array radar[D]. Changsha:National University of Defense Technology, 2007(in Chinese).
[17] 刘钦. 多传感器组网协同跟踪方法研究[D]. 西安:西安电子科技大学, 2013. LIU Q. Study on multi-sensor collaborative tracking in sensor network[D]. Xi'an:Xidian University, 2013(in Chinese).
[18] EDAMANA B, OLDHAM K R. A near-optimal sensor scheduling strategy for an on-off controller with an expensive sensor[J]. IEEE Transactions on Mechatronics, 2014, 19(1):158-170.
[19] FISHER R A. The design of experiments[M]. Edinburgh, UK:Oliver and Boyd, 1935.
[20] ROBBINS H. Some aspects of the sequential design of experiments[J]. Bulletin of the American Mathematical Society, 1952, 58(5):527-535.
[21] MEIER L, PERSCHON J, DRESSIER R M. Optimal control of measurement subsystems[J]. IEEE Transactions on Automatic Control, 1967, 12(5):528-536.
[22] FEDOROV V V. Theory of optimal experiments[M]. New York:Academic Press, 1972.
[23] NASH J M. Optimal allocation of tracking resource[C]//Proceedings of IEEE Conference on Decision & Control. Piscataway, NJ:IEEE Press, 1977:1177-1180.
[24] BIER S G, ROTHMAN L, MANSKE R A. Intelligent sensor management for beyond visual range air-to-air combat[C]//Proceedings of IEEE National Aerospace & Electronics Conference (NAECON). Piscataway, NJ:IEEE Press, 1988:264-269.
[25] CASTANON D A. Approximate dynamic programming for sensor management[C]//Proceedings of IEEE Conference on Decision Control. Piscataway, NJ:IEEE Press, 1997(2):1202-1207.
[26] KTISHNAMURTHY V. Algorithms for optimal scheduling and management of hidden Markov model sensors[J]. IEEE Transactions on Signal Processing, 2002, 50(6):1382-1397.
[27] KREUCHER C, KASTELLA K, HERO A. Multi-target tracking using a particle filter representation of the joint multi-target probability density[J]. IEEE Transactions on Aerospace & Electronic Systems, 2005, 39(4):1396-1414.
[28] THARMARASA R, KIRUBARAJAN T, SINHA A. Decentralized sensor selection for large-scale multisensor-multitarget tracking[J]. IEEE Transactions on Aerospace & Electronic Systems, 2005, 47(2):1307-1324.
[29] RISTIC B, VO B. A note on the reward function for PHD filters with sensor control[J]. IEEE Transactions on Aerospace & Electronic Systems, 2011, 47(2):1521-1529.
[30] GOSTAR A, HOSEINNEZHAD R, BAB-HADIASHAR A. Multi-Bernoulli sensor control via minimization of expected estimation errors[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):1762-1773.
[31] WANG G H, HE Y, YANG Z, et al. Adaptive sensor management in multisensory data fusion system[J]. Chinese Journal of Electronics, 1999, 8(2):136-139.
[32] 何友, 关欣, 王国宏. 多传感器信息融合研究进展与展望[J]. 宇航学报, 2005, 26(4):524-530. HE Y, GUAN X, WANG G H. Survey on the progress and prospect of multisensor information fusion[J]. Journal of Astronautics, 2005, 26(4):524-530(in Chinese).
[33] 杨小军, 马祥, 宋青松, 等. 基于条件后验克拉美-罗下界的目标跟踪传感器管理[J]. 控制理论与应用, 2013, 30(5):543-548. YANG X J, MA X, SONG Q S, et al. Sensor management for target tracking based on conditional posterior Cramér-Rao lower bounds[J]. Control Theory & Applications, 2013, 30(5):543-548(in Chinese).
[34] 刘欣怡, 赵诚, 单甘霖, 等. 面向目标跟踪的基于Rényi信息增量的多传感器管理[J]. 信息与控制, 2015, 44(2):184-189. LIU X Y, ZHAO C, SHAN G L, et al. Multi-sensor management based on Rényi information gain for maneuvering target-tracking[J]. Information & Control, 2015, 44(2):184-189(in Chinese).
[35] 黎子芬, 程江涛, 欧阳寰. 基于跟踪精度控制的多传感器管理方法[J]. 指挥控制与仿真, 2016, 38(2):37-42. LI Z F, CHENG J T, OU Y H. Multi-sensor management method based on tracking accuracy control[J]. Command Control & Simulation, 2016, 38(2):37-42.
[36] 申屠晗, 薛安克, 周治利. 多传感器高斯混合PHD融合多目标跟踪方法[J]. 自动化学报, 2017, 43(6):1028-1037. SHEN T H, XUE A K, ZHOU Z L. Multi-sensor Gaussian mixture PHD fusion for multi-target tracking[J]. Acta Automatica Sinica, 2017, 43(6):1028-1037(in Chinese).
[37] YAN T, HAN C Z. Sensor management for multi-target detection and tracking based on PCRLB[C]//20th IEEE International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2017:136-141.
[38] 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 北京:清华大学出版社, 2006. HAN C Z, ZHU H Y, DUAN Z S. Multi-source information fusion[M]. Beijing:Tsinghua University Press, 2006(in Chinese).
[39] 韩崇昭. 随机系统概论——分析、估计与控制(上下册)[M]. 北京:清华大学出版社, 2014. HAN C Z. An introduction to stochastic systems:Analysis, estimation and control (Volume I, Ⅱ)[M]. Beijing:Tsinghua University Press, 2014.
[40] 吴巍, 王国宏, 柳毅. 机载雷达、红外、电子支援措施协同跟踪与管理[J]. 系统工程与电子技术, 2011, 33(7):1517-1522. WU W, WANG G H, LIU Y. Airborne radar/IRST/ESM synergistic tracking and management[J]. Journal of Systems Engineering & Electronics, 2011, 33(7):1517-1522(in Chinese).
[41] 童俊, 单甘霖. 基于Cramér-Rao下限的多传感器跟踪资源协同分配[J]. 宇航学报, 2013, 33(9):1314-1321. TONG J, SHAN G L. Multi-sensor tracking resource coordinated allocation based on Cramér-Rao low bound[J]. Journal of Astronautics, 2013, 33(9):1314-1321(in Chinese).
[42] 叶继坤, 雷虎民, 薛东风. 基于几何关系的多导弹协同跟踪算法[J]. 系统工程理论与实践, 2014, 32(10):2332-2338. YE J K, LEI H M, XUE D F. Multiple missiles cooperative tracking algorithm base on geometric relation[J]. System Engineering Theory & Practice, 2014, 32(10):2332-2338(in Chinese).
[43] 张华睿, 杨宏文, 胡卫东. 基于Fisher信息距离的传感器管理方法[J]. 系统工程与电子技术, 2015, 34(8):1587-1591. ZHANG H R, YANG H W, HU W D. Method for sensor management based on Fisher information distance[J]. Journal of Systems Engineering & Electronics, 2015, 34(8):1587-1591(in Chinese).
[44] 张华睿. 面向目标跟踪的传感器管理算法研究[D]. 长沙:国防科学技术大学, 2009. ZHANG H R. Research on algorithms of sensor management for target tracking[D]. Changsha:National University of Defense Technology, 2009(in Chinese).
[45] 孟迪, 张群, 罗迎, 等. 基于脉冲交错的数字阵列雷达任务优化调度算法[J]. 航空学报, 2017, 38(8):172-181. MENG D, ZHANG Q, LUO Y, et al. An effective scheduling algorithm for digital array radar based on pulse interleaving[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):172-181(in Chinese).
[46] 孟迪, 张群, 罗迎, 等. 微动目标跟踪成像一体化的雷达资源优化调度算法[J]. 航空学报, 2018, 39(2):219-229. MENG D, ZHANG Q, LUO Y, et al. An optimal radar resource scheduling algorithm based on integrated tracking and imaging of micro-motion targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):219-229(in Chinese).
[47] WANG X Y, HOSEINNEZHAD R, GOSTAR A, et al. Multi-sensor control for multi-object Bayes filters[J]. Signal Processing, 2018, 142:260-270.
[48] GOSTAR A, HOSEINNEZHAD R, BAB-HADIASHAR A, et al. Sensor-management for multitarget filters via minimization of posterior dispersion[J]. IEEE Transactions on Aerospace & Electronic Systems, 2017, 53(6):2877-2884.
[49] HOANG H, VO B. Sensor management for multi-target tracking via multi-Bernoulli filtering[J]. Automatica, 2014, 50(4):1135-1142.
[50] KATSILIERIS F, DRIESSEN H, YAROVOV A. Threat-based sensor management for target tracking[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(4):2772-2785.
[51] GOSTAR A, HOSEINNEZHAD R, BAB-HADIASHAR A. Multi-Bernoulli sensor control using Cauthy-Schwarz divergence[C]//Proceedings of 19th International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2016:651-657.
[52] ZHAO F, SHIN J, REICH J. Information-driven dynamic sensor collaboration[J]. IEEE Signal Processing Magazine, 2002, 19(2):61-72.
[53] XIONG N, SVENSSON P. Multi-sensor management for information fusion:Issues and approaches[J]. Information Fusion, 2002, 3(2):163-186.
[54] ZHANG G, FERRARI S, QIAN M. An information roadmap method for robotic sensor path planning[J]. Journal of Intelligent & Robotic Systems, 2009, 56(1):69-98.
[55] DENZLER J, BROWN C M. Information theoretic sensor data selection for active object recognition and state estimation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(2):145-157.
[56] SHI G M, LIN J, CHEN X Y, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J]. IEEE Transactions on Circuits & System Ⅱ-Express Briefs, 2008, 55(4):379-383.
[57] JOHNSON C, SEIDEL J, SOFER A. Interior point methodology for 3-D PET reconstruction[J]. IEEE Transactions on Medical Imaging, 2000, 19(4):271-285.
[58] KOLBA M, COLLONS L. Information-based sensor management in the presence of uncertainty[J]. IEEE Transactions on Signal Processing, 2007, 55(6):2731-2735.
[59] KTISHNAMURTHY V, DJONIN D. Optimal threshold policies for multivariate POMDPs in radar resource management[J]. IEEE Transactions on Signal Processing, 2009, 57(10):3954-3969.
[60] WILLIAMS J, FISHER J, WILLSKY A. Approximate dynamic programming for communication-constrained sensor network management[J]. IEEE Transactions on Signal Processing, 2007, 55(8):4300-4311.
[61] JOSHI S, BOYD S. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2007, 57(2):451-462.
[62] MOU Z Y, TANG S J, Du Q, et al. Airborne sensor management algorithm based on targets threat evaluation[C]//IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Piscataway, NJ:IEEE Press, 2017:163-167.
[63] GOMES-BORGES M, MALTESE D, VANHEEGHE P, et al. Sensor management using expected risk reduction approach[C]//19th IEEE International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2016:2050-2058.
[64] GOMES-BORGES M, MALTESE D, VANHEEGHE P, et al. A risk-based sensor management using random finite sets and POMDP[C]//20th IEEE International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2017:1-9.
[65] JIA B, PHAN K, BLASCH E, et al. Consensus-based auction algorithm for distributed sensor management in space object tracking[C]//IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2017:1-8.
[66] LI D, SUN P C, CHEN W. A multi-sensor management method based on particle swarm algorithm[C]//IEEE Information Technology, Networking, Electronic & Automation Control Conference. Piscataway, NJ:IEEE Press, 2016:766-770.
[67] NEEMA K, SUBRAMANIAN S, DELAURENTIS D. Dual phase consensus algorithm for distributed sensor management[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(4):1893-1907.
[68] PAGE S, OLDFIELD J, THOMAS P. Towards integrated threat assessment and sensor management:Bayesian multi-target search[C]//IEEE International Conference on Multisensor Fusion & Integration for Intelligent Systems (MFI). Piscataway, NJ:IEEE Press, 2016:44-51.
[69] KATSILIERIS F, DRIESSEN H, YAROVOY A. A simple sensor management criterion for radar beam control based on the CB-MeMBer filter[C]//International Conference on Sensor Data Fusion:Trends, Solutions, Applications (SDF). Piscataway, NJ:IEEE Press, 2015:1-6.
[70] FREUND Y, SCHAPIRE R. A decision theoretic generalization of online learning and an application to boosting[J]. Journal of Computer & System Sciences, 1997, 55:119-139.
[71] BLATT D, HERO A O. Optimal sensor scheduling via classification reduction of policy search[C]//Proceedings of International Conference on Automated Planning and Scheduling, 2006:5-13.
[72] UCHIYA T, NAKAMURA A, KUDO M. Algorithms for adversarial bandit problems with multiple plays[C]//International Conference on Algorithmic Learning Theory. Canberra, Australia:DBLP, 2010, 6331:375-389.
[73] LIU B, JI C L, ZHANG Y, et al. Blending sensor scheduling strategy with particle filter to track a smart target[J]. Wireless Sensor Network, 2009, 1(4):300-305.
文章导航

/