流体力学与飞行力学

基于高阶谐波平衡的跨声速颤振高效预测方法

  • 刘南 ,
  • 郭承鹏 ,
  • 白俊强
展开
  • 1. 中国航空工业空气动力研究院 气动研究与试验二部, 沈阳 110034;
    2. 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034;
    3. 西北工业大学 航空学院, 西安 710072

收稿日期: 2018-01-02

  修回日期: 2018-06-11

  网络出版日期: 2018-06-15

基金资助

国家重点专项资助项目(MJ-2015-F-010)

Efficient prediction approach of transonic flutter based on high-order harmonic balance

  • LIU Nan ,
  • GUO Chengpeng ,
  • BAI Junqiang
Expand
  • 1. Second Aerodynamic Research and Testing Department, AVIC Aerodynamics Research Institute, Shenyang 110034, China;
    2. Aeronautical Science and Technology Key Laboratory for High Speed High Reynolds Number Aerodynamic Research, Shenyang 110034, China;
    3. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2018-01-02

  Revised date: 2018-06-11

  Online published: 2018-06-15

Supported by

National Specially Funded Project (MJ-2015-F-010)

摘要

跨声速流场激波及其诱导的附面层分离等非线性因素导致跨声速颤振边界很难被准确预测,尤其是目前工程常用的偶极子格网法,在跨声速时该方法的预测精度大幅下降。在雷诺平均Navier-Stokes方程流场求解器的框架内,利用结构模态建立广义结构运动方程,利用径向基函数建立模态振型的插值方法,结合径向基函数和无限插值两种网格变形方法的优点实现高效高鲁棒性网格变形方法,从而实现颤振时间推进分析流程,利用国际颤振标模AGARD445.6机翼验证程序在跨声速颤振边界预测中的可靠性。然而,时域方法在气动/结构反复迭代,需要耗费大量的计算资源和时间。为了提高颤振预测效率,基于高阶谐波平衡(HOHB)方法快速获得广义力影响系数矩阵,利用该矩阵建立频域模态位移和气动力之间的关系,实现高效颤振频域分析方法。通过二维翼型和三维机翼算例进行验证,结果表明:在不对计算精度产生明显影响的前提下,HOHB方法能够提高颤振预测效率约6倍。

本文引用格式

刘南 , 郭承鹏 , 白俊强 . 基于高阶谐波平衡的跨声速颤振高效预测方法[J]. 航空学报, 2018 , 39(10) : 121989 -121989 . DOI: 10.7527/S1000-6893.2018.21989

Abstract

Flutter dynamic pressure at the transonic region is much lower than that at other regions. However, the transonic flutter boundary is difficult to predict because of the nonlinear effects induced by the shock wave and separation of boundary layers. In particular, the prediction precision with the doublet lattice method, which is often used in practice, is reduced remarkably at the transonic region. Therefore, in the framework of the Reynolds-Averaged Navier-Stokes solver, a time-domain flutter analysis method is established, where generalized equations for structural motion are developed based on structural modes, a method for interpolation of mode shapes is proposed via the radial basis function, and an efficient mesh deformation method is constructed by combining the radial basis function with transfinite interpolation. The time-domain flutter analysis method is validated by the AGARD445.6 wing. However, the time-domain method is solved by the time-marching strategy, consuming numerous computational resources and time. To improve efficiency of flutter prediction, a frequency-domain flutter analysis method is proposed, where the aerodynamic coefficient matrix is calculated efficiently by the High-Order Harmonic Balance(HOHB) method, and relates mode displacements and generalized forces in the frequency-domain. The frequency-domain method proposed is validated by two-dimensional and three-dimensional test cases. It is illustrated that the HOHB method can increase the prediction efficiency by 6 times without deteriorating the prediction precision obviously.

参考文献

[1] HENSHAW M J, BADCOCK K J, VIO G A, et al. Non-linear aeroelastic prediction for aircraft applications[J]. Progress in Aerospace Sciences, 2007, 43(4-6):65-137.
[2] HONG M S, KURUVILA G, BHATIA K G, et al. Evaluation of CFL3D for unsteady pressure and flutter predictions[C]//44th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2003.
[3] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1):51-117.
[4] HE L. Fourier methods for turbomachinery applications[J]. Progress in Aerospace Sciences, 2010, 46(8):329-341.
[5] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5):879-886.
[6] EKICI K, HALL K C, DOWELL E H. Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008.
[7] WOODGATE M A, BADCOCK K J. Implicit harmonic balance solver for transonic flow with forced motions[J]. AIAA Journal, 2009, 47(4):893-901.
[8] 陈琦, 陈坚强, 谢昱飞, 等. 谐波平衡法在非定常流场中的应用[J]. 航空学报, 2014, 35(3):736-743. CHEN Q, CHEN J Q, XIE Y F, et al. Application of harmonic balance method to unsteady flow field[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):736-743(in Chinese).
[9] RONCH A D, MCCRACKEN A J, BADCOCK K J, et al. Linear frequency domain and harmonic balance predictions of dynamic derivatives[J]. Journal of Aircraft, 2013, 50(3):694-707.
[10] 贡伊明, 刘战合, 刘溢浪, 等. 时间谱方法中的高效GMRES算法[J]. 航空学报, 2017, 38(7):120894. GONG Y M, LIU Z H, LIU Y L, et al. Efficient GMRES algorithm in time spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120894(in Chinese).
[11] THOMAS J P, DOWELL E H, HALL K C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter and limit-cycle oscillations[J]. AIAA Journal, 2002, 40(4):638-646.
[12] THOMAS J P, DOWELL E H, HALL K C. Modeling viscous transonic limit-cycle oscillation behavior using a harmonic balance approach[J]. Journal of Aircraft, 2004, 41(6):1266-1274.
[13] LIU L, DOWELL E H. Harmonic balance approach for an airfoil with a freeplay control surface[J]. AIAA Journal, 2005, 43(4):802-815.
[14] 刘南, 白俊强, 华俊, 等. 高阶谐波平衡方法中非物理解来源分析及改进方法研究[J]. 力学学报, 2016, 48(4):897-906. LIU N, BAI J Q, HUA J, et al. Investigation of the source and improvement of non-physical solutions in high-order harmonic balance[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):897-906(in Chinese).
[15] EKICI K, HALL K C. Harmonic balance analysis of limit cycle oscillations in turbomachinery[J]. AIAA Journal, 2011, 49(7):1478-1487.
[16] YAO W, MARQUES S. Prediction of transonic limit-cycle oscillations using an aeroelastic harmonic balance method[J]. AIAA Journal, 2015, 53(7):2040-2051.
[17] SPALART P R, ALLMARAS S R. An one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting & Exhibit. 1992.
[18] ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[19] JAMESON A, SCHMIDT W, TURKEL E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[C]//14th AIAA Fluid and Plasma Dynamics Conference. Reston, VA:AIAA, 1981.
[20] JAMESON A. Solution of the Euler equations for two-dimensional transonic flow by a multigrid method:MAE Report No. 1613[R]. Princeton University, 1983.
[21] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese).
[22] ALLEN C B, RENDALL T C S. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions[C]//25th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2007.
[23] THOMPSON J F, SONI B K, WEATHERILL N P. Handbook of grid generation[M]. CRC Press, 1998.
[24] 刘南. 机翼跨声速非线性颤振及高效分析方法研究[D]. 西安:西北工业大学, 2016:123-126. LIU N. Investigation of transonic nonlinear flutter and efficient analysis approach[D]. Xi'an:Northwestern Polytechnical University, 2016:123-126(in Chinese).
[25] YATES E C. AGARD standard aeroelastic configurations for dynamic response I-wing 445.6, AGARD Report No. 765[R]. 1985.
[26] SILVA W A, PERRY B, CHWALOWSKI P. Evaluation of linear, inviscid, viscous, and reduced-order modeling aeroelastic solutions of the AGARD445.6 wing using root locus analysis:AIAA-2014-0496[R]. Reston, VA:AIAA, 2014.
[27] 贺顺, 杨智春, 谷迎松. 机翼跨音速颤振特性的频域分析[J]. 中国科学:物理学力学天文学, 2014, 44(3):285-292. HE S, YANG Z C, GU Y S. Frequency domain analysis for wing transonic flutter[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(3):285-292(in Chinese).
[28] THOMAS J P, CUSTER C H, DOWELL E H, et al. Compact implementation strategy for a harmonic balance method within implicit flow solvers[J]. AIAA Journal, 2013, 51(6):1374-1381.
[29] ISOGAI K. On the transonic-dip mechanism of flutter of a sweptback wing[J]. AIAA Journal, 1979, 17(7):793-795.
[30] 张伟伟. 基于CFD技术的高效气动弹性分析方法[D]. 西安:西北工业大学, 2006:113-122. ZHANG W W. Efficient analysis for aeroelasticity based on Computational Fluid Dynamics[D]. Xi'an:Northwestern Polytechnical University, 2006:113-122(in Chinese).
[31] BENDIKSEN O O. Transonic stabilization laws for unsteady aerodynamic and flutter[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[32] BENDIKSEN O O. Review of unsteady transonic aerodynamics:Theory and applications[J]. Progress in Aerospace Sciences, 2011, 47(2):135-167.
[33] BERAN P S, KHOT N S, EASTEP F E, et al. Numerical analysis of store-induced limit-cycle oscillation[J]. Journal of Aircraft, 2004, 41(6):1315-1326.
文章导航

/