为提高铝合金的表面性能,采用磁场辅助激光熔覆的方法在5083铝合金表面制备了Al-Ni-Y-Co-La五元金属玻璃熔覆层,并对其进行组织成分及性能分析。实验结果表明:熔覆层主要由非晶相、α-Al相以及Al4NiY等金属间化合物组成,旋转磁场的搅拌作用使熔覆层非晶相含量由10.2%提高到30.7%,且能够有效抑制多道搭接和多层堆积过程中重熔区晶粒的生长,细化了熔覆层晶粒组织,降低了残余应力,提高了显微硬度及韧性,使其平均显微硬度从278 HV0.1提高至335 HV0.1,且波动较小,平均抗拉强度为303 MPa,为基体拉伸件的110.2%,平均伸长率为6.79%,为基体的33.1%。
Al-Ni-Y-Co-La five-component metallic glass cladding layer was prepared on the surface of 5083 aluminum alloy by magnetic field assisted laser cladding technology to improve the surface properties of the aluminum alloy. The microstructure and properties of the cladding layer are analised. Some of the effective experimental results show that the cladding layer is mainly composed of amorphous phase, α-Al phase and Al4NiY intermetallic compound phase. The stirring of the rotating magnetic field increases the amorphous phase content of the cladding layer from 10.2% to 30.7% and could inhibit the recrystallization grain growth effectively in the process of multi-lap and multi-layer deposition. The residual stress is reduced and the grain structure is refined. The microhardness and tenacity are enhanced, the average microhardness increased from 278 HV0.1 to 335 HV0.1 with less fluctuation. The average tensile strength is 303 MPa, 110.2% of the matrix tensile specimen and the average elongation is 6.79%, 33.1% of the matrix.
[1] 潘复生, 张丁非. 铝合金及应用[M]. 北京:化学工业出版社, 2006. PAN F S, ZHANG D F. Aluminum and its application[M]. Beijing: Chemical Industry Press, 2006 (in Chinese).
[2] ZHU H, ZHU L, CHEN J H. Damage and fracture mechanism of 6063 aluminum alloy under three kinds of stress states[J]. Rare Metals, 2008, 27(1): 64-69.
[3] RAHMAT M A, OSKOUEI R H, IBRAHIM R N, et al. The effect of electroless Ni-P coatings on the fatigue life of Al 7075-T6 fastener holes with symmetrical slits[J]. International Journal of Fatigue, 2013, 52: 30-38.
[4] BOZZA A, GIOVANARDI R, MANFREDINI T, et al. Pulsed current effect on hard anodizing process of 7075-T6 aluminium alloy[J]. Surface & Coatings Technology, 2015, 270: 139-144.
[5] BAO Y, GAWNE D T, GAO J, et al. Thermal-spray deposition of enamel on aluminium alloys[J]. Surface & Coatings Technology, 2013, 232(10): 150-158.
[6] 徐振, 赵志浩, 韩东月, 等. Si含量及热处理对4043铝合金焊丝堆焊层耐磨性的影响[J]. 稀有金属材料与工程, 2016, 45(1): 71-74. XU Z, ZHAO Z H, HAN D Y, et al. Effects of Si content and aging temperature on wear resistance of surfacing layers welded with 4043 aluminum welding wires[J]. Rare Metal Materials & Engineering, 2016, 45(1): 71-74 (in Chinese).
[7] 王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5): 473-478. WANG H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 473-478 (in Chinese).
[8] 饶轮, 董万鹏, 刘雅芳, 等. 激光熔覆氧化铝基涂层的研究进展[J]. 热加工工艺, 2015, 44(14): 45-47. RAO L, DONG W P, LIU Y F, et al. Research progress of Al2O3 based coating by laser cladding[J]. Hot Working Technology, 2015, 44(14): 45-47 (in Chinese).
[9] DUBOURG L, HLAWKA F, CORNET A. Study of aluminium-copper-iron alloys: Application for laser cladding[J]. Surface & Coatings Technology, 2002, 151(3): 329-332.
[10] SCHNEIDER A, AVILOV V, GUMENYUK A, et al. Laser beam welding of aluminum alloys under the influence of an electromagnetic field[J]. Physics Procedia, 2013, 41(30): 4-11.
[11] LINDEUAU D, AMBROSY G, BERGER P, et al. Effects of magnetically supported laser beam welding of aluminum alloys[C]//20st International Congress on Applications of Laser and Electro-Optics, 2001.
[12] 蔡川雄, 刘洪喜, 蒋业华, 等. 交变磁场对激光熔覆Fe基复合涂层组织结构及其耐磨性的影响[J]. 摩擦学学报, 2013, 33(3): 229-235. CAI C X, LIU H X, JIANG Y H, et al. Influence of AC magnetic field on microstructure and wear behaviors of laser cladding Fe-based composite coating[J]. Tribology, 2013, 33(3): 229-235 (in Chinese).
[13] YUE T M, SU Y P, YANG H O. Laser cladding of Zr65 Al7.5Ni10 Cu17.5, amorphous alloy on magnesium[J]. Materials Letters, 2007, 61(1): 209-212.
[14] 李现勤, 程兆谷, 梁工英. ZL111 铝合金表面Ni-Cr-Al激光熔覆层中的非晶组织[J]. 中国激光, 1999, 26(5): 465-469. LI X Q, CHENG Z G, LIANG G Y. Amorphous structures in laser clad Ni Cr Al on ZL111 aluminum alloy[J]. Chinese Journal of Lasers, 1999, 26(5): 465-469 (in Chinese).
[15] LIANG G Y, SU J Y. The microstructure and tribological characteristics of laser-clad Ni-Cr-Al coatings on aluminium alloy[J]. Materials Science and Engineering, 2000, 29(4): 207-212.
[16] 于玮. 激光熔覆制备铝基非晶涂层的研究[D]. 武汉: 华中科技大学, 2012: 32-48. YU W. Study on preparation of aluminum base amorphous alloy coating by laser cladding[D]. Wuhan: Huazhong University of Science and Technology, 2012: 32-48 (in Chinese).
[17] 陈晓娟. 铝合金表面激光熔覆Al-Y-Ni合金涂层的组织与性能研究[D]. 武汉: 华中科技大学, 2007: 33-57. CHEN X J. Microstructures and properties of laser cladding Al-Y-Ni alloys coatings on Al alloys[D]. Wuhan: Huazhong University of Science and Technology, 2007: 33-57 (in Chinese).
[18] 杨柏俊. 铝基块体金属玻璃及其纳米复合材料的制备与性能研究[D]. 沈阳: 东北大学, 2010. YANG B J. Synthesis and properties of Al-based bulk metallic glasses and their nano-composites[D]. Shenyang: Northeastern University, 2010 (in Chinese).
[19] HUANG L, LI S. Glass formation in Ni-Zr-(Al) alloy systems[J]. Journal of Materials, 2013(12): 575640.
[20] GREER A L. Bulk metallic glasses: At the cutting edge of metals research[J]. Mrs Bulletin, 2007, 32(8): 611-619.
[21] YANG B J, YAO J H, ZHANG J, et al. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength[J]. Scripta Materialia, 2009, 61(4): 423-426.