随着空间机械制冷技术的迅速发展,空间脉冲管制冷机在80 K温区整机效率已经优于1 W/18 W(制冷量/输入电功)。针对中国航天未来微小卫星的发展,中国科学院理化技术研究所开展了空间微小脉冲管制冷机的研究,并获得突破性的进展。理化技术研究所研制的宇航级微型脉冲管制冷机,80 K温区制冷量与重量比已经大于1.5 W/1 kg,制冷效率达到1 W/22.5 W(制冷量/输入电功),在轨设计寿命超过30 000 h,可以与中波红外320×256以下面阵探测器直接耦合。系统介绍了中国科学院理化技术研究所微型脉冲管制冷机的研发过程,并给出了最新的研发结果。该制冷机除了可以实现给中波红外探测器制冷以外,还可以作为辅助热控手段,对220 K以下温区的载荷热控、载荷在轨气体多余污染物吸附等应用提供帮助。
With the rapid development of the space mechanical refrigeration technology, the cooling efficiency of the space pulse tube cryocooler at the temperature of 80 K has reached 1 W/18 W (cooling power/input electric power). Considering the development of astronautic miniature satellites in China in the future, the Technical Institute of Physical and Chemistry, China Academy of Sciences, has carried out investigation on space miniature pulse tube cryocooler, and has obtained breakthrough achievements. At the cooling temperature of 80 K, the ratio of cooling power to the mass and the cooling efficiency of the miniature aerospace pulse tube cryocooler developed by Technical Institute of Physical and Chemistry are greater than 1.5 W/1 kg and 1 W/22.5 W respectively, and the designed life of the cooler is over 30 000 h. Besides, the cooler can be coupled with the medium wave infrared array detector whose area array is less than 320×256. This paper introduces the research and development process of the miniature aerospace pulse tube cryocooler of the Technical Institute of Physical and Chemistry, and presents the recent research results. In addition to acting as the cooling source for the medium wave infrared array detector, the cooler can be used as the assistant cooling source for thermal control and adsorption of redundant pollution gas of the load on board working at the temperature of 220 K.
[1] ROSS R G. JPL cryocooler development and test program:A 10-year overview[C]//Proceedings of the 1999 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 1999:115-124.
[2] ROSS R G, GREEN K E. AIRS cryocooler system design and development[M]//Cryocoolers 9. Springer US, 1997:885-894.
[3] ROSS R G, JOHNSON D L, COLLINS S A. SIRS PFM pulse tube cooler system-Level performance[M]//Cryocoolers 10. Springer US, 1999:119-128.
[4] RODRIGUEZ J I, COLLINS S A,NA-NAKORNPANOM A, et al. On-orbit performance of the TES pulse tube coolers and instrument-A first year in space[J]. Advances in Cryogenic Engineering, 2012, 57:137-146.
[5] KOTSUBO V, OLSON J R, NAST T C. Development of a 2 W at 60 K pulse tube cryocooler for spaceborne operation[M]//Cryocoolers 10. Springer US, 2002:157-161.
[6] WILSON K B, FRALICK CC, GEDEON D R, et al. Sunpower's CPT60 pulse tube cryocooler[M]//Cryocoolers 14. Springer US, 2007:123-132.
[7] GROEP W L V D, MULLIÉ J C, WILLEMS D W J, et al. Development of a 15 W coaxial pulse tube cooler[C]//Cryocooler 15. Springer US, 2009:157-165.
[8] CAO Q, GAN Z H, LIU G J, et al. Theoretical and experimental study on a pulse tube cryocooler driven with a linear compressor[M]//Cryocoolers 15. Springer US, 2009:149-156
[9] GETHING M J. Seeking the heat in the night[J]. Jane's International Defense Review, 2005, 38:42-47.
[10] MARK S. Cobham microcooler for high temperature applications[M]//Cryocoolers 18. Springer US, 2015:73-77.
[11] PETACHM, WATERMAN M, TWARD E. Pulse tube microcooler for space application[M]//Cryocoolers 14. Springer US, 2007:89-93.
[12] NAST T C, CHAMPAGNE P J, KOTSUBO V, et al. Miniature pulse tube cryocooler for space applications[M]//Cryocoolers 11. Springer US, 2002:145-154.
[13] CHASSAING C, BUTTERWORTH J, AIGOUY G, et al. 150 K-200 K miniature pulse tube cooler for micro satellites[J]. Advances in Cryogenic Engineering, 2014, 59:525-532.
[14] 徐娜娜. 百赫兹超高频微型化脉冲管制冷机研究[D]. 北京:中国科学院研究生院, 2011. XU N N. Investigation on the ultra-high frequency miniature pulse tube cryocooler[D]. Beijing:Graduate University of Chinese Academy of Sciences, 2011(in Chinese).
[15] 徐娜娜, 陈厚磊, 梁惊涛, 等. 超高频同轴型脉冲管制冷机研究[J]. 机械工程学报, 2011, 47(6):156-159. XU N N, CHEN H L, LIANG J T, et al. Investigation on the ultra-high frequency coaxial pulse tube cryocooler[J]. Journal of Mechanical Engineering, 2011, 47(6):156-159(in Chinese).
[16] DANG H Z, WU Y N. Development of a miniature coaxial pulse tube cryocooler for a space-borne infrared detector system[C]//Infrared Technology and Applications, 2010.
[17] GARAWAY I, GAN Z, BRADLEY P,et al. Development of a miniature 150 Hz pulse tube cryocooler[M]//Cryocooler 15. Springer US, 2009:105-113
[18] GARAWAY I, VEPRIK A, RADEBAUGH R, et al. Diagnostics and optimization of a miniature high frequency pulse tube cryocooler[J]. Advances in Cryogenic Engineering, 2010, 55:167-174
[19] VANAPALLI S, LEWIS M, GAN Z, et al. 120 Hz pulse tube cryocooler for fast cooldown to 50 K[J]. Applied Physics Letters, 2007, 90(7):163.
[20] DURAND D, TWARD E, TOMA G, et al. Efficient high capacity space microcooler[M]//Cryocoolers 18. Springer US, 2014.
[21] RADEBAUGH R, O'GALLAGHER A. Regenerator operation at very high frequencies for microcryocoolers[J]. Advances in Cryogenic Engineering, 2006, 51:1919-1928.