流体力学与飞行力学

脉冲吹气对无缝襟翼翼型气动性能的影响

  • 王万波 ,
  • 姜裕标 ,
  • 黄勇 ,
  • 于昆龙 ,
  • 张鑫
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 西北工业大学 航空学院, 西安 710072;
    3. 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000

收稿日期: 2018-03-06

  修回日期: 2018-04-08

  网络出版日期: 2018-06-05

Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics

  • WANG Wanbo ,
  • JIANG Yubiao ,
  • HUANG Yong ,
  • YU Kunlong ,
  • ZHANG Xin
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    3. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-03-06

  Revised date: 2018-04-08

  Online published: 2018-06-05

摘要

只有采用足够小的能量输入,获取更大的空气动力收益后,主动流动控制才有可能在真实飞机上获得更广泛的应用。脉冲吹气比定常吹气所需能量更少,控制效果更好,在改善翼型气动性能上得到广泛的研究。数值模拟了脉冲频率、占空比、动量系数等参数对无缝襟翼翼型升阻特性的影响规律,研究表明,脉冲频率接近于涡脱落频率时增升效果最好,当脉冲频率小于涡脱落频率时,阻力增加,当脉冲频率为涡脱落频率2倍时,阻力减小最多;动量系数较小时,占空比越小,冲击效应越强,增升效果越好;动量系数小于临界动量系数时,脉冲吹气增升效果优于定常吹气,当动量系数大于临界动量系数时,脉冲吹气控制效果低于定常吹气。研究脉冲吹气参数对翼型性能的影响规律,对采用周期性激励增升减阻、舵面增效的飞行器设计具有一定参考意义。

本文引用格式

王万波 , 姜裕标 , 黄勇 , 于昆龙 , 张鑫 . 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018 , 39(11) : 122118 -122129 . DOI: 10.7527/S1000-6893.2018.22118

Abstract

Only when small enough energy input can obtain greater aerodynamic performance gains, and the flow control technology can be widely used in the real aircraft. Compared with steady blowing, pulse blowing needs less energy and results in more efficient control effect, so it is more used in lift enhancement. The effect of pulse frequency, duty cycle and moment coefficient on the aerodynamic characteristics of a slotless flap airfoil is studied by numerical simulation. The results show that the optimal pulse frequency for lift increment approximately equals the vortex shedding frequency, the drag increases when the pulse frequency is lower than the vortex shedding frequency, and the optimal pulse frequency for drag reduction is about twice the optimal lift increment frequency. When the moment coefficient is small, lift increases with the decrease of the duty cycle. When the moment coefficient is lower than the critical moment coefficient, pulse blowing is more sufficient to improve lift performance, but when the moment coefficient is higher than the critical moment coefficient, steady blowing is the best choice. The investigation can provide some reference for using periodic excitation to increase lift, reduce drag and enhance maneuvering surface efficiency in the design of aircraft.

参考文献

[1] ATTINELLO J S.Design and engineering features of flap blowing installations [M]. New York: Pergamon Press, 1961: 463-515.
[2] SCHUBAUER G B, SKRAMSTAD H K. Laminar boundary layer oscillations and transition on a flat pate: NACA Report909[R]. Washington, D.C.: NACA, 1948.
[3] 胡如云, 王亮, 符松. 后台阶流动及其控制述评[J]. 中国科学: 物理学力学天文学, 2015, 45(12): 124704. HU R Y, WANG L, FU S. Review of backward-facing step flow and separation reduction[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2015, 45(12): 124704.
[4] GREENBLATT D, WYGNANSKI I J. The control of flow separation by periodic excitation[J]. Progress in Aerospace Sciences, 2000, 36(7): 487-545.
[5] AMITAY M, SMITH B L, GLEZER A. Aerodynamic flow control using synthetic jet technology: AIAA-1998-0208[R]. Reston, VA: AIAA, 1998.
[6] SMITH D R, AMITAY M, KIBENS V, et al. Modification of lifting body aerodynamics using synthetic jet actuators: AIAA-1998-0209[R]. Reston, VA: AIAA, 1998.
[7] MCLEAN J D, CROUCH J D, STONER R C, et al. Study of the application of separation control by unsteady excitation to civil transport aircraft: Technical Report CR-1999-209338[R]. Washington, D.C.: NASA, 1999.
[8] RUDNIK R, GEYR H. The European High Lift Project EUROLIFT Ⅱ—Objectives, approach, and structure: AIAA-2007-4296[R]. Reston, VA: AIAA, 2007.
[9] SMITH D M, DICKEY E, VON KLEIN T. The ADVINT program: AIAA-2006-2854[R]. Reston, VA: AIAA, 2006.
[10] SHMILOVICH A, YADLIN Y, DICKEY E D, et al. Development of an active flow control technique for an airplane high-lift configuration: AIAA-2017-0322[R]. Reston, VA: AIAA, 2017.
[11] BIELER H, ABBAS A, CHIARAMONTE J Y, et al. Flow control for aircraft performance enhancements—Overview of Airbus-University cooperation:AIAA-2006-3692[R]. Reston, VA: AIAA, 2006.
[12] WANG L, FU S. Detached-eddy simulation of flow past a pitching NACA0015 airfoil with pulsed actuation[J]. Aerospace Science & Technology, 2017, 69: 123-135.
[13] 佟增军, 刘沛清, 段会申. 襟翼吹吸气控制技术在二维多段翼型中应用的数值模拟[J].飞机设计, 2010, 30(4): 10-15. TONG Z J, LIU P Q, DUANG H S. Numerical simulation of the flap blowing and suction control for two dimension multi-element airfoil[J]. Aircraft Design, 2010, 30(4): 10-15 (in Chinese).
[14] WANG Y K, LI Q, ZHOU P, et al. Effect of pulse blowing on flow over control surface: AIAA-2013-0848[R]. Reston, VA: AIAA, 2013.
[15] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428. ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428 (in Chinese).
[16] 焦予秦, 陆岩. 多段翼型吹气流动分离控制研究[J]. 应用力学学报, 2015, 32(2): 215-220. JIAO Y Q, LU Y. Research on flow separation control on multi-element airfoil using air-blowing[J]. Chinese Journal of Applied Mechanics, 2015, 32(2): 215-220 (in Chinese).
[17] 孔博. 基于环量控制技术的无缝增升系统气动设计[D]. 上海: 上海交通大学, 2012. KONG B. The aerodynamic design of seamless high-lift system based on circulation control technology [D]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese).
[18] 姜裕标, 王万波, 常智强. 定常吹气对无缝襟翼翼型地面效应影响的研究[J]. 航空学报, 2017, 38(6): 120751. JIANG Y B, WANG W B, CHANG Z Q. Numerical simulationof aerodynamic characteristic of slot-less flap airfoil with steady blowing in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120751 (in Chinese).
[19] 郝璇, 刘芳, 王斌. 基于襟缝翼吹气技术的短距起降飞行器增升策略的数值模拟研究[J]. 航空工程进展, 2016, 7(4): 408-418. HAO X, LIU F, WANG B. The numerical simulation research on high lift enhancement strategies of STOL aircraft based on flap and slat blowing[J]. Advances in Aeronautical Science and Engineering, 2016, 7(4): 408-418 (in Chinese).
[20] 孙卫平, 杨康智, 秦何军. 大型水陆两栖飞机吹气襟翼设计与分析验证[J]. 航空动力学报, 2016, 31(4): 903-909. SUN W P, YANG K Z, QIN H J. Design and test of a jet flap for a large amphibian[J]. Journal of Aerospace Power, 2016, 31(4): 903-909 (in Chinese).
[21] 王妙香, 孙卫平, 秦何军. 水陆两栖飞机内吹式襟翼优化设计[J]. 航空学报, 2016, 37(1): 300-309. WANG M X, SUN W P, QIN H J. Optimization design of an internal blown flap used in large amphibian[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 300-309 (in Chinese).
[22] RAJU R, MITTAL R, CATTAFESTA L. Dynamics of airfoil separation control using zero-net mass-flux forcing[J]. AIAA Journal, 2008, 46(12): 3103-3115.
[23] HIPP K D, BENTON S I, WALKER M M. Parametric optimization of control for a post-stall airfoil using pulsed jets: AIAA-2015-1268[R]. Reston, VA: AIAA, 2015.
[24] VOLINO R J, KARTUZOVA O, IBRAHIM M B. Separation control on a very high lift low pressure turbine airfoil using pulsed vortex generator jets[J]. Journal of Turbomachinery, 2011, 133(4): 041021.
[25] PACKARD N O, BONS J P. Pulsed blowing on a laminar airfoil at low reynolds number: AIAA-2011-3173[R]. Reston, VA: AIAA, 2011.
[26] BAUER M, PELTZER I, NITSCHE W, et al. Active flow control on an industry-relevant civil aircraft half model[M]//Active Flow Control Ⅱ 2010. Berlin: Springer-Verlag, 2010: 95-107.
[27] HÖLL T, JOB A K, GIACOPINELLI P, et al. Numerical study of active flow control on a high-lift configuration[J]. Journal of Aircraft, 2012, 49(5): 1406-1422.
[28] GVNTHER B, THIELE F.Feature-based comparison of flow fields around a three-element high-lift configuration with active flow control: AIAA-2008-4079[R]. Reston, VA: AIAA, 2008.
[29] SHMILOVICH A, YADLIN Y. Flow control for the systematic buildup of high-lift systems[J]. Journal of Aircraft, 2008, 45(5): 1680-1688.
[30] GALBRAITH M C. Numerical simulations of a high-lift airfoil employing active flow control: AIAA-2006-0147[R]. Reston, VA: AIAA, 2006.
[31] MITTAL R, KOTAPATI R B, CATTAFESTA L N. Numerical study of resonant interactions and flow control in a canonical separated flow: AIAA-2005-1261[R]. Reston, VA: AIAA, 2005.
[32] GVNTHER B, CARNARIUS A, THIELE F. Numerical investigation of active flow control applied to an airfoil with a camber flap[M]//Active Flow Control Ⅱ 2010. Berlin: Springer-Verlag, 2010: 45-61.
[33] WANG Z, GURSUL I.Lift enhancement of a flat-plate airfoil by steady suction[J]. AIAA Journal, 2017, 55(4): 1-18.
[34] NAIM A, GREENBLATT D, SEIFERT A, et al. Active control of cylinder flow with and without a splitter plate using piezoelectric actuators: AIAA-2002-3070[R]. Reston, VA: AIAA, 2002.
[35] MELTON L P, YAO C S, SEIFERT A. Active control of separation from the flap of a supercritical airfoil[J]. AIAA Journal, 2006, 44(1): 34-41.
[36] JONES G S, YAO C S, ALLAN B G. Experimental investigation of a 2D supercritical circulation-control airfoil using particle image velocimetry:AIAA-2006-3009[R]. Reston, VA: AIAA, 2006.
[37] 恽起麟. 风洞实验[M]. 北京: 国防工业出版社, 2000: 364-365. YUN Q L.Wind tunnel testing[M]. Beijing: National Defend Industry Press, 2000: 364-365 (in Chinese).
文章导航

/