材料工程与机械制造

一种空间超大型可展开柔性聚光器

  • 李丽芳 ,
  • 郭朋真 ,
  • 刘荣强
展开
  • 1. 哈尔滨工业大学 大科学工程专项建设指挥部, 哈尔滨 150001;
    2. 哈尔滨工业大学 航天学院, 哈尔滨 150001;
    3. 哈尔滨工业大学 机电学院, 哈尔滨 150001

收稿日期: 2018-04-10

  修回日期: 2018-05-28

  网络出版日期: 2018-05-28

基金资助

装备预研航天科技联合基金(6141B06030202);国家自然科学基金(51405112);中国博士后科学基金(2015T80336)

A space large-scale deployable compliant concentrator

  • LI Lifang ,
  • GUO Pengzhen ,
  • LIU Rongqiang
Expand
  • 1. Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    3. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2018-04-10

  Revised date: 2018-05-28

  Online published: 2018-05-28

Supported by

Joint Fund of Equipment Pre-research and CAST (6141B06030202); National Natural Science Foundation of China (51405112); China Postdoctoral Science Foundation (2015T80336)

摘要

面向空间太阳能电站(SSPS)对大口径太阳能聚光器的应用需求,提出一种超大型、轻量化、高精度的空间可展开柔性聚光器的新构型。采取理论建模、计算仿真、优化设计相结合的方法对其抛物面构型原理、展开机构折展原理、展开态结构稳定性、动态聚焦精度等问题进行研究,并完成大口径可展开柔性聚光器的设计。提出了基于多层弹性花瓣镜体复合结构的大口径柔性聚光器优化创新设计方法。由于采用薄板柔索结构,本聚光器具有精度高、展收体积比大、质量轻、在线控制简单等优点,为空间太阳能电站千米级聚光器提供一种创新设计方法。

本文引用格式

李丽芳 , 郭朋真 , 刘荣强 . 一种空间超大型可展开柔性聚光器[J]. 航空学报, 2018 , 39(S1) : 722187 -722187 . DOI: 10.7527/S1000-6893.2018.22187

Abstract

We propose a new configuration for the large-scale lightweight high-precision deployable flexible concentrator considering the need for large-aperture concentrators by the Space Solar Power Station (SSPS). By theoretical modeling, computational simulation, and optimized design, we analyze the problems including the principles of the parabolic configuration, unfolding mechanism and stability of the deployable structure, and accuracy of dynamic focusing. We then complete the design for a largescale deployable compliant concentrator. A multi-layer elastic petal mirror composite structure based on the optimization design method is further proposed for the large-aperture compliant concentrator. Due to the use of a thin-plate and cable structure, the concentrator has the advantages of high accuracy, large volume ratio, light weight, and easy online control, providing an innovative design method for kilometer-scale concentrators used in the SSPS.

参考文献

[1] 侯欣宾, 王立. 未来能源之路——太空发电站[J]. 国际太空, 2014, 5(5):70-79. HOU X B, WANG L. Future energy road——Space power station[J]. Space International, 2014, 5(5):70-79(in Chinese).
[2] MANKINS J C. The case for space solar power[M]. Houston:Virginia Edition Publishing, 2014:55-72.
[3] ELLIOT P, HARIK E P, MCFATTER J, et al. The international space station solar alpha rotary joint anomaly investigation[C]//Proceedings of the 40th Aerospace Mechanisms Symposium. Washington, D.C.:NASA Kennedy Space Center, 2010:187-206.
[4] CARRINGTON C, FEINGOLD K. Space solar power concepts:Demonstrations to pilot plants[C]//53th International Astronautical Congress. Houston:NASA Marshall Space Flight Center, 2002:10-19.
[5] NATIONAL R C. Laying the foundation for space solar power:An assessment of NASA's space solar power investment strategy[R]. Washington, D.C.:National Academies Press, 2001.
[6] NATIONAL S S O. Space based solar power as an opportunity for strategic security, phase 0 architecture feasibility study[R]. Washington, D.C.:National Security Space Office, 2007.
[7] JAFFE P, HODKIN J, HARRINGTON F. Sandwich module prototype progress for space solar power[J]. Acta Astronautica, 2014, 94(2):662-671.
[8] MORI M, KAGAWA H, SAITO Y. Summary of studies on space solar power systems of Japan Aerospace Exploration Agency (JAXA):IAC-05-C3.1.03[R].2005.
[9] TAKEICHI N, UENO H, ODA M. Feasibility study of a solar power satellite system configured by formation flying[J]. Acta Astronautica, 2005, 57(9):698-706.
[10] MENG X L, XIA X L, SUN C, et al. Optimal design of symmetrical two-stage flat reflected concentrator[J]. Solar Energy, 2013, 93(7):334-344.
[11] YANG Y, ZHANG Y, DUAN B, et al. A novel design project for space solar power station (SSPS-OMEGA)[J]. Acta Astronautica, 2016, 121(1):51-58.
[12] GIEBLER M M, PALMER W B. Study of advanced sunflower precision deployable antenna[R]. California Institute of Techno1ogy, 1979.
[13] PINTZ A, CASTLE C H, REIMER R R, et al. Design of an auto deployable technology demonstration solar concentrator[R]. Ohio:Advanced Manufacturing Center of Cleveland State University, 1989:867-873.
[14] GUEST S D, PELLEGRINO S. A new concept for solid surface deployable antennas[J]. Acta Astronautica, 1996, 38(2):103-113.
[15] GUEST S D. Deployable structure:Concept and analysis[D]. Cambridge:University of Cambridge, 1994:14-25.
[16] SEFFEN K A, YOU Z, PELLEGRINO S. Folding and deployment of curved tape springs[J]. International Journal of Mechanical Sciences, 2000, 42(10):2055-2073.
[17] GUEST S D, PELLEGRINOS S. A new concept for solid surface deployable antennas[J]. Acta Astronautica, 1996, 38(2):103-113.
[18] 戴剑锋, 赵沛, 毛根旺, 等. 用于太阳能推进的可折叠展开式伞状龙骨聚光器[J]. 强激光与粒子束, 2010, 22(1):2295-2298. DAI J F, ZHAO P, MAO G W, et al. Collapsible unfolding umbrella keel concentrator for solar propulsion[J]. High Power Laser and Particle Beams, 2010, 22(1):2295-2298(in Chinese).
[19] CHEN C F, LIN C H, JAN H T. A solar concentrator with two reflection mirrors designed by using a ray tracing method[J]. Optik-International Journal for Light and Electron Optics, 2010, 121(11):1042-1051.
[20] YONG S A, XIA X L, TAN H P. Radiation performance of dish solar concentrator/cavity receiver system[J]. Solar Energy, 2008, 82(1):13-21.
文章导航

/