流体力学与飞行力学

基于非线性耦合本构关系的改进边界条件

  • 江中正 ,
  • 赵文文 ,
  • 袁震宇 ,
  • 陈伟芳
展开
  • 浙江大学 航空航天学院, 杭州 310027

收稿日期: 2018-01-29

  修回日期: 2018-05-15

  网络出版日期: 2018-05-28

基金资助

国家自然科学基金(11502232,11572284,51575487,61627901);国家重点基础研究发展计划(2014CB340201);国家建设高水平大学公派研究生项目(留金发[2017]3109号,学号201706320214)

An enhanced wall-boundary condition based on nonlinear coupled constitutive relations

  • JIANG Zhongzheng ,
  • ZHAO Wenwen ,
  • YUAN Zhenyu ,
  • CHEN Weifang
Expand
  • School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

Received date: 2018-01-29

  Revised date: 2018-05-15

  Online published: 2018-05-28

Supported by

National Natural Science Foundation of China (11502232, 11572284, 51575487, 61627901); National Basic Research Program of China (2014CB340201); National High-level University Government-sponsored Postgraduate Program (China Scholarship Council [2017]No. 3109, Student number 201706320214)

摘要

非线性耦合本构关系(NCCR)模型是在Eu的广义流体动力学方程(GHE)基础上,通过绝热假设、Eu封闭和Myong简化推导出的关于非守恒量(黏性应力与热流)的非线性代数方程,有效拓展了线性的纳维-斯托克斯-傅里叶(NSF)本构模型在非平衡流动中的模拟能力,为快速准确模拟连续与稀薄耦合流动问题提供了强有力的理论工具。针对该模型开展滑移边界条件研究,结合努森层内物理量非线性分布的特点,提出一套在物面处与模型精度相一致的非线性修正滑移边界条件。在有限体积框架下,采用AUSMPW+格式和LU-SGS方法以及NCCR的完整耦合求解算法,对不同稀薄程度的高超声速单原子氩气圆柱绕流和平板绕流问题进行数值模拟。研究结果表明,基于NCCR模型的修正边界条件准确刻画出物面努森层内流动的非线性特点,有效提高了固壁滑移边界的精度。采用非线性修正边界的NCCR模型准确预测了连续流、滑移流和过渡流域的物面压力、摩阻与热流系数。

本文引用格式

江中正 , 赵文文 , 袁震宇 , 陈伟芳 . 基于非线性耦合本构关系的改进边界条件[J]. 航空学报, 2018 , 39(10) : 122057 -122057 . DOI: 10.7527/S1000-6893.2018.22057

Abstract

On the basis of Eu's Generalized Hydrodynamic Equations(GHE), a set of nonlinear algebraic equations for non-conserved variables (shear stress and heat flux), namely Nonlinear Coupled Constitutive Relations (NCCR), is derived to extend linear Navier-Stokes-Fourier (NSF) constitutive models' capability for simulating non-equilibrium flows under adiabatic assumption through Eu's closure and Myong's simplification, providing a strong theoretical tool for predicting continuum-rarefied flows accurately and quickly. Based on this set of nonlinear algebraic equations, this paper proposes a set of nonlinear modified boundary conditions to ensure prediction with the same accuracy at the wall, considering the characteristics of nonlinear distribution in Knudsen layer. Within the finite volume framework, the AUSMPW+ scheme, the LU-SGS implicit method and the coupled algorithm are utilized to solve the NCCR equations completely. The hyperbolic flows of a monatomic argon gas around a cylinder and a flat plate for several different flow regimes from continuum to rarefied gas are numerically simulated. The simulation results show that our NCCR-based enhanced boundary conditions can reflect the nonlinearity of the Knudsen layer the at wall, and can improve the accuracy with slip boundary conditions. It is also demonstrated that the NCCR model in conjunction with the enhanced boundary conditions are capable of accurately predicting the surface aerothermodynamic properties of continuum, slip and transitional flow regimes.

参考文献

[1] 陈伟芳, 赵文文, 江中正, 等. 稀薄气体动力学矩方法研究综述[J]. 气体物理,2016,1(5):9-24. CHEN W F, ZHAO W W, JIANG Z Z, et al. A review of moment equations for rarefied gas dynamics[J]. Physics of Gases, 2016, 1(5):9-24(in Chinese).
[2] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendom Press, 1994.
[3] GRAD H. Asymptotic theory of the Boltzmann equation[J]. Physics of Fluids, 1963, 6(2):147.
[4] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3):511-525.
[5] BROADWELL J E. Study of rarefied shear flow by the discrete velocity method[J]. Journal of Fluid Mechanics, 1964, 19(3):401-414.
[6] CHAPMAN S C T. The mathematical theory of non-uniform gases[M]. 2nd ed. London:Cambridge University Press, 1953.
[7] 赵文文. 高超声速流动Burnett方程稳定性与数值计算方法研究[D]. 杭州:浙江大学, 2014. ZHAO W W. Linearized stability analysis and numerical computation of Burnett equations in hypersonic flow[D]. Hangzhou:Zhejiang University, 2014(in Chinese).
[8] GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics,1949, 2(4):331-407.
[9] TORRILHON M. Modeling nonequilibrium gas flow based on moment equations[J]. Annual Review of Fluid Mechanics, 2016, 48:429-458.
[10] 蔡振宁. 气体动理学中数值矩方法的算法研究与应用[D]. 北京:北京大学, 2013. CAI Z N. Investigations and applications of the numerical moment method in the kinetic theory of gases[D]. Beijing:Peking University, 2013(in Chinese).
[11] XU K, HUANG J. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764.
[12] LI Z, ZHANG H. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2):708-738.
[13] EU B C. Kinetic theory and irreversible thermodynamics[M]. New York:Wiley, 1992:327-421.
[14] EU B C. Generalized thermodynamics:The thermodynamics of irreversible processes and generalized hydrodynamics[M]. New York:Kluwer Academic Publishers, 2002.
[15] 肖洪,商雨禾,吴迪,等. 稀薄气体动力学的非线性耦合本构方程理论及验证[J]. 航空学报, 2015, 36(7):2091-2104. XIAO H, SHANG Y H, WU D, et al. Nonlinear coupled constitutive relations and its validation for rarefied gas flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2091-2104(in Chinese).
[16] MYONG R S. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows[J]. Physics of Fluids, 1999, 11(9):2788-2802.
[17] MYONG R S. A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics[J]. Journal of Computational Physics, 2001, 168(1):47-72.
[18] MYONG R S. A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows[J]. Journal of Computational Physics, 2004, 195(2):655-676.
[19] JIANG Z Z, CHEN W F, ZHAO W W. Numerical analysis of the micro-Couette flow using a non-Newton-Fourier model with enhanced wall boundary conditions[J]. Microfluidics and Nanofluidics, 2018, 22(1):10.
[20] JIANG Z Z, ZHAO W W, CHEN W F. A three-dimensional finite volume method for conservation laws in conjunction with modified solution for nonlinear coupled constitutive relations[C]//30th International Symposium on Rarefied Gas Dynamics, 2016:040002-1-040002-8.
[21] JIANG Z Z, CHEN W F, ZHAO W W. Numerical simulation of three-dimensional non-equilibrium flows using a second-order nonlinear model[C]//21st AIAA International Space Planes and Hypersonic Technologies Conference. Reston, VA:AIAA, 2017:2346.
[22] EU B C. A modified moment method and irreversible thermodynamics[J]. The Journal of Chemical Physics, 1980, 73(6):2958-2969.
[23] KUBO R. Generalized cumulant expansion method[J]. Journal of the Physical Society of Japan, 1962, 17(7):1100-1120.
[24] EU B C, ALGHOUL M. Generalized hydrodynamics and shock waves[J]. Physical Review E, 1997, 56(3):2981-2992.
[25] XIAO H, TANG K. A unified framework for modeling continuum and rarefied gas flows[J]. Scientific Reports, 2017, 7(1):13108.
[26] TANG K, XIAO H. Entropy conditions involved in the nonlinear coupled constitutive method for solving continuum and rarefied gas flows[J]. Entropy, 2017, 19(12):683.
[27] ZHAO W W, JIANG Z Z, CHEN W F. Computation of 1-D shock structure using nonlinear coupled constitutive relations and generalized hydrodynamic equations[C]//30th International Symposium on Rarefied Gas Dynamics, 2016:140007-1-140007-8.
[28] MYONG R S. Gaseous slip models based on the Langmuir adsorption isotherm[J]. Physics of Fluids, 2004, 16(1):104-117.
[29] MAWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170:231-256.
[30] SMOLUCHOWSKI V S M. Über wärmeleitung in verdünnten gasen[J]. Annalen der Physik, 1898, 300(1):101-130.
[31] GÖKÇEN T, MACCORMACK R W. Nonequilibrium effects for hypersonic transitional flows using continuum approach:AIAA-1989-0461[R]. Reston, VA:AIAA, 1989.
[32] LOCKERBY D A, REESE J M, GALLIS M A. Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows[J]. AIAA Journal, 2005, 43(6):1391-1393.
[33] LOCKERBY D A, REESE J M, EMERSON D R, et al. Velocity boundary condition at solid walls in rarefied gas calculations[J]. Physical Review E, 2004, 70(1):017303.
[34] CERCIGNANI C. Higher order slip according to the linearized Boltzmann equation:AS-64-19[R]. Berkeley:California University Berkeley Inst of Engineering Research, 1964.
[35] BESKOK A M, KARNIADAKIS G E, TRIMMER W. Rarefaction and compressibility effects in gas microflows[J]. Journal of Fluids Engineering, 1996, 118(3):448-456.
[36] DEISSLER R G. An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases[J]. International Journal of Heat and Mass Transfer, 1964, 7(6):681-694.
[37] HSIA Y T, DOMOTO G A. An experimental in-vestigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances[J]. Journal of Lubrication Technology, 1983, 105(1):120-129.
[38] LOCKERBY D A, REESE J M. High-resolution Burnett simulations of micro Couette flow and heat transfer[J]. Journal of Computational Physics, 2003, 188(2):333-347.
[39] BAO F B, LIN J Z, SHI X. Burnett simulation of flow and heat transfer in micro Couette flow using second-order slip conditions[J]. Heat and Mass Transfer, 2007, 43(6):559-566.
[40] KIM K H, KIM C, RHO O. Methods for the accurate computations of hypersonic flows:I. AUSMPW+ scheme[J]. Journal of Computational Physics, 2001, 174(1):38-80
[41] LOFTHOUSE A J, SCALABRIN L C, BOYD I D. Velocity slip and temperature jump in hypersonic aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):38-49.
[42] 陈伟芳,吴明巧,赵玉新,等. 超声速平板绕流DSMC/EPSM混合算法研究[J]. 空气动力学学报, 2002,20(4):441-445. CHEN W F, WU M Q, ZHAO Y X, et al. The study of hybrid DSMC/EPSM method of supersonic flat plate[J]. Acta Aerodynamica Sinica, 2002, 20(4):441-445(in Chinese).
[43] 石于中, 吴其芬, 任兵. 有限平板绕流Monte-Carlo方法仿真[J]. 空气动力学学报, 1991,9(3):324-329. SHI Y Z, WU Q F, REN B. Direct simulation Monte Carlo method for rarefied flow over a flat plate[J]. Acta Aerodynamica Sinica, 1991, 9(3):324-329(in Chinese).
[44] 胡远, 陈松, 孙泉华, 等. 超声速平板绕流的全流域阻力特性研究[C]//第三届全国高超声速科技学术会议, 2010:1-9. HU Y, CHEN S, SUN Q H, et al. Study of drag property in the entire flow regime for supersonic flow over a flat plate[C]//3rd Hypersonic Science Technology Conference, 2010:1-9(in Chinese).
[45] SUN Q, BOYD I D. Drag on a flat plate in low-Reynolds-number gas flows[J]. AIAA Journal, 2004, 42(6):1066-1072.
[46] BOYD I D, CHEN G, CANDLER G V. Predicting failure of the continuum fluid equations in transitional hypersonic flows[J]. Physics of Fluids, 1995, 7(1):210-219.
文章导航

/