本文叙述和讨论了某些增强立尾效益的主动流动控制(AFC)技术的研究。在NASA ERA项目支持下Rensselaer学院完成了4%和5%缩比立尾模型的合成射流AFC风洞试验,加州理工学院完成了14%缩比立尾模型的振荡射流AFC风洞试验,后者表明当动量系数为1.7%时可获50%的侧向力增量。基于将上述两种AFC技术集成于飞机系统的可行性研究,Boeing在Ames NFAC(40 ft×80 ft风洞)完成了B-757全尺寸立尾风洞模型试验,在风速为100 knots,方向舵偏角为30°和侧滑角为0°与-7.5°下,得出采用31个振荡射流激振器可获得20%侧向力增量。NASA ERA项目组与Boeing共同努力在2015年春实现了装有31个振荡射流激振器的B-757 ecoDemonstrator飞行试验。飞行员反馈和13%~16%侧向力增量的飞行试验初步分析结果表明了振荡射流AFC技术的成功。
Some research efforts of advancing Active Flow Control (AFC) technology to enhance the aerodynamic efficiency of a vertical tail is discussed in this paper. With the support of NASA ERA project, wind tunnel tests are performed on the synthetic jet AFC technology for 4% and 5% subscale vertical tail models at the Rensselaer Polytechnic Institute, and wind tunnel tests are conducted on oscillating jet AFC technology for 14% subscale vertical tail model at the California Institute of Technology. The latter experiment shows that 50% side force enhancement is achieved when the momentum coefficient is 1.7%. Based on research on feasibility of integrating the two AFC technologies for the aircraft system, Boeing completed a wind tunnel test (40 ft×80 ft) on a full-scale B-757 vertical tail model at NASA Ames NFAC, and found that 20% side force enhancement can be achieved using 31 oscillating jet actuator configuration at 100 knots, 30°rudder deflection, and the side slip angle ranging from 0° -7.5°. Afterwards, flight test of B-757 ecoDemonstrator equipped with 31 oscillating jet actuators is performed in the spring of 2015 with the cooperation of NASA ERA project team and Boeing. Both the pilot feedback and the result of 13%-16% side force increment confirmed the success of the oscillating jet AFC.
[1] CATTAFESTA L N, SHEPLAK M. Actuators for active flow control[J]. Annual Review of Fluid Mechanics, 2011, 43(43):247-272.
[2] BETZ A. History of boundary layer control in Germany[M]//LACHMANN G V, editor. Boundary Layer and Flow Control. Its Principles and Application. Vol.1. New York:Pergamon Press, 1961.
[3] HEAD M R. History of research on boundary layer control for low drag in U.K.[M]//LACHMANN G V, editor. Boundary layer and flow control. Its principles and application. Vol.1. New York:Pergamon Press, 1961.
[4] SEELE R, TEWES P, WOSZIDLO R, et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft, 2010, 46(6):2098-2106.
[5] PHILLIPS E, WOSZIDLO R, WYGNANSKI I. The dynamics of separation control on a rapidly actuated flap:AIAA-2010-4246[R]. Reston, VA:AIAA, 2010.
[6] DESALVO M, WHALEN E, GLEZER A. High-lift enhancement using active flow control:AIAA-2011-3355[R]. Reston, VA:AIAA, 2011.
[7] TEWES P, TAUBERT L, WYGNCENSKI I J. On the use of sweeping jets to augment the lift of a Lambda-wing:AIAA-2010-4689[R]. Reston, VA:AIAA, 2010.
[8] ROMAN G, RAGHU S. Cavity resonance suppression using miniature fluidic oscillators[J]. AIAA Journal, 2004, 42(12):2608-2611.
[9] WOSZIDLO R, WYGNANSKI I J. Parameters governing separation control with sweeping jet actuators:AIAA-2011-3172[R]. Reston, VA:AIAA, 2011.
[10] VATSA V, KOKLU M, WYGNANSKI I J. Numerical simulation of fluidic actuators for flow control applications:AIAA-2012-3239[R]. Reston, VA:AIAA, 2012.
[11] SEELE R, GRAFF E, GHARIB M, et al. Performance enhancement of a vertical tail model with sweeping jet actuators:AIAA-2013-0411[R]. Reston, VA:AIAA, 2013.
[12] RATHAY N, BOUCHER M, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators:No sideslip:AIAA-2012-0071[R]. Reston, VA:AIAA, 2012.
[13] RATHAY N, BOUCHER M, AMITAY M, et al. Performance enhancement of a vertical stabilizer using synthetic jet actuators:Non-zero sideslip:AIAA-2012-2657[R]. Reston, VA:AIAA, 2012.
[14] RATHAY N, BOUCHER M, AMITAY M, et al. Parametric study of synthetic jet based control for performance enhancement of a vertical tail[J]. AIAA Journal, 2014, 52(11):2440-2454.
[15] SEELE R, GRAFF E, GHARIB M, et al. Improving rudder effectiveness with sweeping jet actuators:AIAA-2012-3244[R]. Reston, VA:AIAA, 2012.
[16] GRAFF E, SEELE R, LIN J C, et al. Sweeping jet actuators-A new design tool for high lift generation[R]. 2013.
[17] WHALEN E A, LACY D, LIN J C, et al. Performance enhanced of a full scale vertical tail model equipped with active flow control:AIAA-2015-0784[R]. Reston, VA:AIAA, 2015.
[18] ANDINO M Y, LIN J C, WASHBURN A E, et al. Flow separation control on a full scale vertical tail model using sweeping jet actuators:AIAA-2015-0785[R]. Reston, VA:AIAA, 2015.
[19] LIN J C, ANDINO M Y, ALEXANDER M G, et al. An overview of active flow control enhanced vertical tail technology development:AIAA-2016-0056[R]. Reston, VA:AIAA, 2016.
[20] MOONEY H P, BRANDT J B, LACY D S, et al. AFC-enabled vertical tail system integration study:NASA/CD-2014-218168[R]. Washington, D.C.:NASA, 2014.
[21] 朱自强, 吴宗成, 陈迎春, 等. 民机空气动力设计先进技术[M]. 上海:上海交通大学出版社, 2013. ZHU Z Q, WU Z C, CHEN Y C, et al. Civil aircraft aerodynamic design advanced technology[M]. Shanghai:Shanghai Jiaotong University Press, 2013(in Chinese).
[22] MCLEAN J D, CROUCH J D, STONER R C, et al. Study of the application of separation control by unsteady excitation to civil transport aircraft:NASA-CR-209338[R]. Washington, D.C.:NASA, 1999.