电子电气工程与控制

太空环境下电子束原位制造技术

  • 曾如川 ,
  • 葛一凡 ,
  • 魏松 ,
  • 姚旗
展开
  • 1. 北京卫星制造厂有限公司, 北京 100094;
    2. 北京市航天器焊接技术与装备工程技术研究中心, 北京 100094

收稿日期: 2018-03-22

  修回日期: 2018-05-14

  网络出版日期: 2018-05-11

Electron beam in-situ fabrication in space

  • ZENG Ruchuan ,
  • GE Yifan ,
  • WEI Song ,
  • YAO Qi
Expand
  • 1. Beijing Spacecrafts Limited Company, Beijing 100094, China;
    2. Beijing Engineering Research Center of Welding Technology and Equipment for Spacecrafts, Beijing 100094, China

Received date: 2018-03-22

  Revised date: 2018-05-14

  Online published: 2018-05-11

摘要

美国国家航空航天局(NASA)载人探索计划的提出给载人登月和载人火星等带来了机会和风险,NASA的工程师和科学家正在开展在月球或火星表面利用当地提炼的材料进行原位制造工艺技术的研究。首先,介绍了太空原位制造和修复(ISFR)技术的概念和特点,结合该技术的发展背景,介绍了电子束原位制造技术的概念、特点以及在太空环境下应用的优势和潜力。然后,根据所用原材料和成形工艺原理的不同,电子束原位制造技术又分为电子束熔融(EBM)和电子束自由成形制造(EBF3)技术两个分支,分别介绍了这两个分支技术的概念、原理、特点以及采用该技术研制出的零件的性能,结合硬件设备的情况介绍了在太空环境下应用的适用性,同时也详细介绍了NASA利用兰利研究中心的C-9抛物线飞行试验系统进行电子束原位制造微重力试验的研究成果、试验数据和未来的发展趋势。最后,结合中国未来空间事业发展的需要,提出了关于发展太空环境下电子束原位制造技术的设想与建议。

本文引用格式

曾如川 , 葛一凡 , 魏松 , 姚旗 . 太空环境下电子束原位制造技术[J]. 航空学报, 2018 , 39(S1) : 722227 -722227 . DOI: 10.7527/S1000-6893.2018.22227

Abstract

National Aeronautics and Space Administration (NASA)'s human exploration initiative poses great opportunity and risk for manned missions to the Moon, Mars, and beyond. Engineers and scientists at NASA are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing locally refined materials. The In-Situ Fabrication and Repair (ISFR) technology is introduced, as one of the most competitive technology of ISFR, and Electron beam In-situ Fabrication in space is introduced. Electron Beam Melting (EBM) and Electron Beam Free Form Fabrication (EBF3), as two branches of Electron beam In-situ Fabrication in space, are introduced, such as technology inception, characterization of technology, technical advantage, performance of the product, current applications, supportability in space, research findings and test data by NASA, especially the microgravity testing carried by NASA Langley Research Center's C-9 parabolic flight. The equipment of Electron beam In-situ Fabrication, modification of which to satisfy the space environment and the technology status and develop trend is also introduced. Some suggestions about Electron beam In-situ Fabrication in space for our future space project are proposed.

参考文献

[1] 丁新玲. 国外太空制造技术研究[J]. 航天制造技术, 2007, 12(6):11-14. DING X L. Research on in-space manufacturing technology abroad[J]. Aerospace Manufacturing Technology, 2007, 12(6):11-14(in Chinese).
[2] MONICA S H, JAMES E G. Developing fabrication technologies to provide on demand manufacturing for exploration of the Moon and Mars[C]//The 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2006:1-8.
[3] COOPER K G, GOOD J E, GILLEY S D. Layered metals fabrication technology development for support of lunar exploration at NASA/MSFC[C]//Space Thechnology and Applications International Forum-staif 2007. Washington, D.C.:NASA Marshall Space Flight Center, 2007:728-735.
[4] JOE T H. Fabrication infrastructure to enable efficient exploration and utilization of space[C]//The 58th International Astronautical Congress. Washington, D.C.:NASA, 2007:1-20.
[5] JOE T H, JOHN C F. On-site fabrication infrastructure to enable efficient exploration and utilization of space[C]//The 59th International Astronautical Congress. Washington, D.C.:NASA, 2008:1-7.
[6] MCLEMORE C A, JOHN C F. Fabrication capabilities utilizing in situ materials[C]//AIAA SPACE 2008 Conference & Exposition. Reston, VA:AIAA, 2008:1-6.
[7] KOK Y H, TAN X P, TOR S B, et al. Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting[J]. Virtual and Physical Prototyping Online, 2015, 10(1):13-21.
[8] RAWAL S, BRANTLEY J, KARABUDAK N. Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications[C]//International Conference on Recent Advances in Space Technologies. Istanbul:IELCONF, 2013:5-11.
[9] GOOD J. Fabrication in space-what materials are needed[C]//Abstract for Arcam User's Group Meeting. Washington, D.C.:NASA Marshall Space Flight Center, 2007:1-20.
[10] KOK Y H, TAN X P, LOH N H, et al. Geometry dependence of microstructure and microhardness for selective electron beam-melted Ti-6Al-4V parts[J]. Virtual and Physical Prototyping Online, 2016, 11(3):183-191.
[11] MCLEMORE C A, FIKES J C, MCCARLEY K S, et al. From lunar regolith to fabricated parts:Technology developments and the utilization of Moon dirt[C]//11th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Washington, D.C.:NASA Marshall Space Flight Center, 2008:1-11.
[12] FISKE M R, MCGREGOR W R, MCLEMORE C A, et al. Lunar in situ materials-based surface structure technology development efforts at NASA/MSFC[C]//Space Thechnology and Applications International Forum-staif 2007. Washington, D.C.:NASA Marshall Space Flight Center, 2007:871-877.
[13] MCLEMORE C A, FIKES J, MCCARLEY K, et al. Sustainable human presence on the Moon using in situ resources[C]//AIAA SPACE 2008 Conference & Exposition. Reston, VA:AIAA, 2008:1-10.
[14] IGNATIEV A, FREUNDLICH A, HORTON C. Solar cell development on the surface of Moon from in-situ lunar resources[C]//Aerospace Conference, Proceedings. Piscataway, NJ:IEEE Press, 2004:315-318.
[15] TANG Q, PANG S Y. A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti-6Al-4-V alloy[J]. International Journal of Heat and Mass Transfer, 2014, 78:203-215.
[16] TAMINGER K M, HAFLEY R A. Electron beam freeform fabrication for cost effective near-net shape manufacturing[C]//NATO/RTO AVT-139 Specialists' Meeting on Cost Effective Manufacture via Net Shape Processing. Washington, D.C.:NASA Langley Research Center, 2006:1-9.
[17] TAMINGER K M, DOMACK C S, ZALAMEDA J N, et al. In-process thermal imaging of the electron beam freeform fabrication process[J]. Proceedings of SPIE, 2016, 9861(2):1-11.
[18] YAN W Z, YUE Z F, ZHANG J Z. Study on the residual stress and warping of stiffened panel produced by electron beam freeform fabrication[J]. Materials & Design, 2016, 89:1205-1212.
[19] HAFLEY R A, TAMINGER K M, KEITH R. Electron beam freeform fabrication in the space environment[C]//The 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2007:1-9.
[20] TAMINGER K M. Electron beam freeform fabrication:A fabrication process that revolutionizes aircraft structural designs and spacecraft supportability:20080021301[R].Washington, D.C.:ARMD Technical Seminar, 2008.
文章导航

/