利用最优控制方法研究变转速旋翼直升机在遭遇单发失效时,旋翼转速对自转着陆低速回避区的影响。首先,以UH-60A直升机为样机,建立三维刚体飞行动力学模型,并分析低速范围内旋翼转速对直升机需用功率的影响。然后,在模型中加入单发失效后自转着陆阶段发动机输出功率以及旋翼转速变化方程,并利用直接多重打靶法将直升机单发失效后的自转着陆过程转换为非线性最优控制问题进行数值求解。最后,基于最小化回避区面积的思想,得到并分析直升机在不同旋翼转速下单发失效后的自转着陆低速回避区,以及回避区高悬停点、拐点和低悬停点对应的最优着陆轨迹和操纵过程。结果表明:随着旋翼转速的降低,直升机单发失效后的低速回避区首先会逐渐缩小,然后迅速增大。最小回避区对应的旋翼转速略高于最小需用功率对应的旋翼转速。适当降低旋翼转速不仅能有效降低直升机的需用功率,还有利于提高直升机单发失效后的自转着陆性能。
The optimal control method is used to study the effects of variable rotor speed on the helicopter low-speed Height-Velocity (H-V) diagram in the One Engine Inoperative (OEI) situation and the corresponding optimal autorotation landing procedure. First, a three-dimensional rigid body flight dynamics model for a UH-60A helicopter is established, and the effect of rotor speed on the helicopter required power in the low-speed range is analyzed. Then, equations for the engine output shaft power and rotor speed during autorotation landing in OEI are added into the flight dynamics model. The helicopter autorotation landing procedure in OEI is converted into a nonlinear optimal control problem by using the direct multiple shooting method, and solved numerically. Finally, based on the idea of minimizing the area of the avoidance zone, the H-V diagrams and the optimal autorotation landing procedures in OEI at three key points (high, knee and low) of the H-V diagrams with various operational rotor speeds are investigated. The results show that the reduction of operating rotor speed will cause gradual shrink of the H-V diagram area first and rapid expansion then. In addition, the rotor speed corresponding to the minimum H-V diagram is slightly higher than the rotor speed corresponding to the minimum required power. Properly reducing the rotor speed can effectively reduce the helicopter required power, and can also improve the autorotation landing performance in OEI.
[1] BOWEN D G, CHOPRA I. Aeromechanics of a slowed rotor[J]. Journal of the American Helicopter Society, 2015, 60(3):1-13.
[2] DIOTTAVIO J, FRIEDMANN D. Operational benefits of an optimal, widely variable speed rotor[C]//Proceedings of the American Helicopter Society of the 66th Annual Forum. Alexandria, VA:The AHS International, Inc., 2010.
[3] BOWEN D G, CHOPRA I. Aeromechanics of a variable-speed rotor[C]//Proceedings of the 67th Annual Forum of the American Helicopter Society. Alexandria, VA:The AHS International, Inc., 2011.
[4] 韩东. 变转速旋翼直升机性能及配平研究[J]. 航空学报, 2013, 34(6):1241-1248. HAN D. Study on the performance and trim of helicopters with variable speed rotors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1241-1248(in Chinese).
[5] BERRY B, CHOPRA I. Performance and vibratory load measurements of a slowed-rotor at high advance ratios[C]//Proceedings of the 68th Annual Forum of the American Helicopter Society. Alexandria, VA:The AHS International, Inc., 2012.
[6] KAREM A E. Optimum speed rotor:EP, US6007298[P]. 1999-12-28.
[7] 徐明, 李建波, 彭名华, 等. 基于不确定性的旋翼转速优化直升机参数设计[J]. 航空学报, 2016, 37(7):2170-2179. XU M, LI J B, PENG M H, et al. Parameter design of helicopter with optimum speed rotor based on uncertainty optimization[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2170-2179(in Chinese).
[8] DATTA A, YEO H, NORMAN T R. Experimental investigation and fundamental understanding of a slowed UH-60A rotor at high advance ratios[C]//Proceedings of the 67th Annual Forum of the American Helicopter Society. Alexandria, VA:The AHS International, Inc., 2011:1105-1130.
[9] 孟万里, 陈仁良. 直升机低速回避区计算分析[J]. 南京航空航天大学学报, 2014, 46(2):204-211. MENG W L, CHEN R L. Prediction for helicopter low-speed height-velocity diagram[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(2):204-211(in Chinese).
[10] CARLSON E B, ZHAO Y J. Prediction of tiltrotor height-velocity diagrams using optimal control theory[J]. Journal of Aircraft, 2003, 40(5):896-905.
[11] BIBIK P, NARKIEWICZ J. Helicopter optimal control after power failure using comprehensive dynamics model[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2):1354-1362.
[12] MENG W, CHEN R. Study of helicopter autorotation landing following engine failure based on a six-degree-of-freedom rigid-body dynamics model[J]. Chinese Journal of Aeronautics, 2013, 26(6):1380-1388.
[13] APONSO B L, BACHELDER E N. An autorotation flight director for helicopter training[C]//Proceedings of the 59th Annual Forum of the American Helicopter Society. Alexandria, VA:The AHS International, Inc., 2003:1038-1049.
[14] APONSO B L, LEE D, BACHELDER E N. Evaluation of a rotorcraft autorotation training display on a commercial flight training device[J]. Journal of American Helicopter Society, 2007, 52(2):123-33.
[15] 孟万里. 直升机单台发动机失效后飞行轨迹优化研究和应用[D]. 南京:南京航空航天大学, 2014:13-33. MENG W L. Study and application of trajectory optimization for helicopter flight after one engine failure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:13-33(in Chinese).
[16] CIRCULAR A. Certification of transport category rotorcraft:29-2C[S]. Washington, D.C.:Department of Transportation, Federal Aviation Administration, 1999.
[17] KIM C J, SUNG S, PARK S H, et al. Numerical time-scale separation for rotorcraft nonlinear optimal control analyses[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2):658-673.
[18] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2):193-207.
[19] BOTTASSO C L, MAISANO G, SCORCELLETTI F. Trajectory optimization procedures for rotorcraft vehicles including pilot models, with applications to ADS-33 MTEs, Cat-A and engine off landings[C]//Proceedings of the 65th Annual Forum of the American Helicopter Society. Alexandria:The AHS International, Inc., 2009.
[20] GILL P E, MURRAY W, SAUNDERS M A. User's guide for SNOPT version 7:Software for large-scale nonlinear programming[D]. Oakland, CA:University of California, 2006:4-10.
[21] NAGATA J I. Government competitive test utility tactical transport aircraft system (UTTAS). Sikorsky YUH-60A Helicopter:USAAEFA-74-06-1[R]. Kern County, CA:Army Aviation Engineering Flight Activity Edwards AFB, 1976.
[22] BOTTASSO C L, MAISANO G, SCORCELLETTI F. Trajectory optimization procedures for rotorcraft vehicles, their software implementation, and applicability to models of increasing complexity[J]. Journal of the American Helicopter Society, 2010, 55(3):032010-1-032010-13.