目前各国在轨应用的对接机构属于硬碰撞式对接机构,在此构型下两航天器在空间进行碰撞接触时撞击能量较大,并且此结构下目标飞行器的对接范围较窄。随着空间探测任务的深入,需要对对接机构提出更高层次的设计要求,因此弱撞击对接机构也将成为空间探测任务中一项重要的研究方向。本文对弱撞击对接机构运动学的正解和反解进行了研究分析,得到了相应的推导公式,并通过MATLAB软件对其进行了算例校验。求解出了对接环运动速度和执行推杆伸出速度的关系,这对弱撞击对接机构的工程研制有很大的应用价值。
At present, the on-orbit docking mechanism of each country is the high impact docking mechanism. With this configuration, the impact energy is great when two spacecrafts contact with each other in the space. The range of the docking of the target spacecraft is narrow due to the characteristics of this configuration. With the development of deep space exploration, higher level of design requirement is needed, so the low impact docking mechanism has become an important research direction in deep space exploration missions. In this paper, the positive and negative solutions for the kinematics of the low impact docking mechanism are studied, and the corresponding calculation formula is obtained. A numerical example is used to analyze the formula with MATLAB. The relationship between the velocity of the docking ring and the speed of the linear actuator is solved, which is of great value to the engineering development of the low impact docking mechanism.
[1] 彭祺擘, 李桢, 李海阳. 载人登月飞行方案研究[J]. 上海航天, 2012, 29(5):14-19. PENG Q B, LI Z, LI H Y. Analysis on manned lunar mission flight mode[J]. Aerospace Shanghai, 2012, 29(5):14-19(in Chinese).
[2] 张崇峰, 刘志. 空间对接机构技术综述[J]. 上海航天, 2016, 33(5):1-11. ZHANG C F, LIU Z. Review of space docking mechanism and its technology[J]. Aerospace Shanghai, 2016, 33(5):1-11(in Chinese).
[3] DICK B N, OESCH C, RUPP T W. Linear actuator for the NASA docking system[DB/OL].[2017-12-21]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005413.pdf.
[4] 张玲瑄, 邵济明, 邹怀武, 等. 弱撞击式对接机构力传递及运动性能分析与优化[J]. 载人航天, 2015, 21(5):463-466 ZHANG L X, SHAO J M, ZHOU H W, et al. Analysis and optimization of force transmissibility and kinematic performance of low impact docking mechanism[J]. Manned Spaceflight, 2015, 21(5):463-466(in Chinese).
[5] 徐敏, 聂宏, 陈金宝, 等. 空间弱撞击对接机构对接精度分析[J]. 机械科学与技术, 2015, 34(7):1131-1134. XU M, NIE H, CHEN J B, et al. The workspace and kinematic analysis and simulation research of the low-impact mating system[J]. Machinery Design & Manufacture, 2015, 34(7):1131-1134(in Chinese).
[6] 刘志, 崔宇新, 张崇峰. 国际对接系统标准探究[J]. 载人航天, 2014, 20(2):152-158. LIU Z, CUI Y X, ZHANG C F. Study on international docking system standard[J]. Manned Spaceflight, 2014, 20(2):152-158(in Chinese).
[7] 陈传志, 聂宏, 陈金宝, 等. 弱撞击对接机构捕获过程的传力性能分析[J]. 南京航空航天大学学报, 2014, 46(3):451-456. CHEN C Z, NIE H, CHEN J B, et al. Analysis of force transmissibility performance of low impact docking mechanism during capturing process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3):451-456(in Chinese).
[8] MOTAGHEDI P, GHOFRANIAN S. Feasibility of the SIMAC for the NASA docking system[DB/OL].[2017-12-21]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140009916.pdf.
[9] 徐敏. 空间弱撞击对接机构设计与仿真分析[D]. 南京:南京航空航天大学, 2013:31-36. XU M. Design and simulation analysis of a low impact docking system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:31-36(in Chinese).
[10] 赵真, 时军委, 王卫军, 等. 小型弱撞击式对接机构对接动力学建模方法研究[C]//中国宇航学会深空探测技术专业委员会第八届学术年会论文集(下篇). 北京:中国宇航学会, 2011:6. ZHAO Z, SHI J W, WANG W J, et al. Study on the method of dynamics modeling of small low impact docking mechanism[C]//The Proceedings of the 8th Annual Conference of the Professional Committee of Deep Space Exploration Technology of the Chinese Astronautical Society (Part two). Beijing:Chinese Society of Astronautics, 2011:6(in Chinese).
[11] REMBALA R, OWER C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience[J]. Acta Astronautica, 2009, 65(7-8):912-920.
[12] BARTOE J D F, FORTENBERRY L. One year old and growing:A status report of the international space station and its partners[J]. Acta Astronautica, 2000, 47(2-9):589-597.