固体力学与飞行器总体设计

细长体飞行器自由边界热模态试验与仿真

  • 唐晓峰 ,
  • 常洪振 ,
  • 何振威 ,
  • 史晓鸣 ,
  • 唐国安
展开
  • 1. 复旦大学 航空航天系, 上海 200433;
    2. 上海机电工程研究所, 上海 201109;
    3. 北京强度环境研究所, 北京 100076

收稿日期: 2018-02-11

  修回日期: 2018-04-12

  网络出版日期: 2018-05-02

基金资助

上海航天科技创新基金(SAST201605)

Thermo-modal test and simulation of spindly vehicle in free boundary conditions

  • TANG Xiaofeng ,
  • CHANG Hongzhen ,
  • HE Zhenwei ,
  • SHI Xiaoming ,
  • TANG Guoan
Expand
  • 1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China;
    2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China;
    3. Beijing Institute of Structure and Environment Engineering, Beijing 100076, China

Received date: 2018-02-11

  Revised date: 2018-04-12

  Online published: 2018-05-02

Supported by

Innovation Foundation of Shanghai Aerospace Science and Technology (SAST201605)

摘要

随着耐热承载一体化材料在新型高超声速飞行器上的应用,承力结构的工作温度不断提高,各类热模态特性逐渐得到关注。针对非平面形状的细长体飞行器自由边界条件下的热模态特性开展了研究。通过研究模拟气动加热条件的圆筒形加热笼、模拟自由边界的耐高温柔性支撑、非接触激光多普勒测振、耐高温激振杆激励等试验方法,获得了细长体结构自由边界条件下随温度变化的前3阶模态变化情况。结果表明:对此类薄壁长圆筒类结构,温度升高对模态频率影响可以超过6 Hz。开展有限元仿真,并与试验取得的热模态结果的变化规律进行对比。结果表明:建立考虑温度对结构弹性模量、热应力影响的壳单元模型,能够较好地预测出前3阶模态频率在全部受热时间范围内的最大下降量,可为高超声速飞行器控制系统设计时的拉偏范围提供参考。

本文引用格式

唐晓峰 , 常洪振 , 何振威 , 史晓鸣 , 唐国安 . 细长体飞行器自由边界热模态试验与仿真[J]. 航空学报, 2018 , 39(10) : 222095 -222095 . DOI: 10.7527/S1000-6893.2018.22095

Abstract

As the use of more high temperature/high load durable materials in modern hypersonic vehicles requires load durable structures to work in increasingly higher temperature, much attention has been paid to thermo-modal characteristics of structures. This paper discusses the thermo-modal characteristics of a spindly vehicle with a non-planar shape in free flight boundary conditions. A cylindrical cage for aerodynamic heating simulation is studied. A free flight and flexible supporting boundary which is high temperature durable is simulated, a non-contact vibration measurement is conducted using laser Doppler, and a high temperature durable excitation pole is excited, obtaining the first 3-order modal variation of the spindly vehicle under free boundary conditions. The results show that temperature elevation can result in a 6 Hz decrease of the natural frequencies of such a thin and long cylindrical structure. A comparison of FE simulation results with test results shows that the shell element model which considers the effect of temperature on elastic module and thermo-stress of the structure can well predict the maximum decrease of the first 3-order natural frequencies in aerodynamic heating, and can thus provide some reference for the margin of the design of control system of hypersonic vehicles.

参考文献

[1] GLASS D E. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2008.
[2] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2008.
[3] MCNAMARA J J, CULLER A J, CROWELL A R. Aerothermoelastic modeling considerations for hypersonic vehicles[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2009.
[4] 程昊, 李海波, 靳荣华, 等. 高超声速飞行器结构热模态试验国外进展[J]. 强度与环境, 2012, 39(3):52-59. CHENG H, LI H B, JIN R H, et al.The review of the high temperature modal test for the hypersonic vehicle[J]. Structure & Environment Engineering, 2012, 39(3):52-59(in Chinese).
[5] 沈娟, 李舰. 国外高超声速技术近期研究进展[J].飞航导弹, 2016(12):4-7, 27. SHEN J, LI J. The near future research progress of foreign hypersonic technology[J]. Winged Missile, 2016(12):4-7, 27(in Chinese).
[6] 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7):2225-2235. LIU H, LI X D, YANG W Q, et al. Investigation of thermal vibration test on wing structure of high speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2225-2235(in Chinese).
[7] 李晓东, 杨文岐, 刘浩. 基于纯随机激励的热模态试验技术研究[J]. 强度与环境, 2015, 42(2):52-56. LI X D, YANG W Q, LIU H. The study of thermo-modal test technique based on true-random excitation[J]. Structure & Environment Engineering, 2015, 42(2):52-56(in Chinese)
[8] 谭光辉, 李秋彦, 邓俊. 热模态下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1):S32-S37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S32-S37(in Chinese).
[9] 吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构1100℃高温环境下的热模态试验研究[J]. 复合材料学报, 2015, 32(2):323-331. WU D F, WANG Y W, PU Y, et al. Experimental investigation of thermal modal of composite wing structure in high-temperature environments up to 1100℃ for hypersonic aircraft[J]. Acta Meteriae Compositea Sinica, 2015, 32(2):323-331(in Chinese).
[10] SPIVEY N D. High-temperature modal survey of a hot-structure control surface[C]//27th International Congress of the Aeronautical Science, 2010.
[11] 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6):1861-1875. WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1861-1875(in Chinese).
[12] 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动态特性影响研究[J]. 航空学报, 2013, 34(2):334-342. WU Z Q, CHENG H, ZHANG W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):334-342(in Chinese).
[13] CHENG H, LI H B, ZHANG W, et al. Effects of radiation heating on modal characteristics of panel structures[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1228-1235.
[14] 贺尔敏, 陈兵, 曹存显. 高温环境下二维正交编织C/SiC复合材料壁板振动模态演化[J]. 航空学报, 2017, 38(7):220553. HE E M, CHEN B, CAO C X. Vibration mode evolution of 2D woven C/SiC composite panels in hot environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):220553(in Chinese).
[15] JEON B H, KANG H W, LEE Y S. Free vibration characteristics of thermally loaded cylindrical shell[C]//ÖCHSNER A. Materials with Complex Behavior:Modeling, Simulation, Testing, and Application. Berlin Heidelberg:Springer-Verlag, 2010:139-148.
[16] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al.Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[17] 吴志刚, 楚龙飞, 杨超, 等. 推力耦合的高超声速飞行器气动伺服弹性研究[J]. 航空学报, 2012, 33(8):1355-1363. WU Z G, CHU L F, YANG C, et al.Study on aeroservoelasticicty of hypersonic vehicles with thrust coupling[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1355-1363(in Chinese)
[18] 胡爱虔, 张铎. 飞行器结构考虑连接面刚度的固有特性计算研究[J]. 弹箭与制导学报, 2005, 25(3):298-301. HU A Q, ZHANG D. Normal modes analysis of flight vehicle structure with contact surface[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(3):298-301(in Chinese).
[19] 肖乃风, 刘永清. 热振联合试验控制技术研究[J]. 强度与环境, 2012, 39(2):53-57. XIAO N F, LIU Y Q. Research of control technology in thermal-vibration test[J]. Structure & Environment Engineering, 2012, 39(2):53-57(in Chinese).
[20] 黄世勇, 王智勇. 热环境下的结构模态分析[J]. 导弹与航天运载技术, 2009, 25(5):50-56. HUANG S Y, WANG Z Y. The structure modal analysis with thermal environment[J]. Missile and Space Vehicle, 2009, 25(5):50-56(in Chinese)
[21] 史晓鸣, 杨炳渊. 瞬态加热环境下变厚度板温度场及热模态分析[J]. 计算机辅助工程, 2006, 15(S1):15-18. SHI X M, YANG B Y. Temperature field and modal analysis of flat plate with thermal environment of transient heating[J]. Computer Aided Engineering, 2006, 15(S1):15-18(in Chinese).
[22] 周思达, 刘莉, 李昱霖, 等. 高速飞行器热结构工作时变模态参数辨识[J]. 航空学报, 2015, 36(1):373-380. ZHOU S D, LIU L, LI Y L, et al.Operational identification of time-varying modal parameters for thermal structures of high-speed aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):373-380(in Chinese)
文章导航

/