电子电气工程与控制

基于稀疏分解的空间目标双基地ISAR自聚焦算法

  • 韩宁 ,
  • 李宝晨 ,
  • 王立兵 ,
  • 童俊 ,
  • 郭宝锋
展开
  • 1. 军械技术研究所, 石家庄 050003;
    2. 陆军工程大学 科研学术处, 南京 210014;
    3. 中国人民解放军63961部队, 北京 100012;
    4. 陆军工程大学石家庄校区, 石家庄 050003

收稿日期: 2018-01-23

  修回日期: 2018-05-02

  网络出版日期: 2018-05-02

基金资助

国家自然科学基金(61601496)

Algorithm for autofocusing of bistatic ISAR of space target based on sparse decomposition

  • HAN Ning ,
  • LI Baochen ,
  • WANG Libing ,
  • TONG Jun ,
  • GUO Baofeng
Expand
  • 1. Ordnance Technique Research Institute, Shijiazhuang 050003, China;
    2. Scientific Research and Academic Department, Army Engineering University, Nanjing 210014, China;
    3. No. 63961 Unit, PLA, Beijing 100012, China;
    4. Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China

Received date: 2018-01-23

  Revised date: 2018-05-02

  Online published: 2018-05-02

Supported by

National Natural Science Foundation of China (61601496)

摘要

空间目标双基地逆合成孔径雷达(ISAR)成像中,双基地角时变会造成二维图像的散焦。针对此问题,在三大同步理想可实现的条件下,以平稳空间目标为研究对象,分析了空间目标双基地ISAR成像原理,研究了双基地角时变对二维图像散焦的影响机理,提出了利用稀疏分解实现高精度自聚焦的算法。首先,将半双基地角的余弦进行泰勒展开;其次,结合目标的平动及转动条件,将成像相位项用多项式建模;然后,利用稀疏分解算法估计多项式的二次项系数,据此构建补偿项完成相位补偿。算法利用L-曲线准则选取正则参数,基于目标尺寸的先验信息构建冗余基的高分辨因子,利用推广的正则化欠定系统聚焦求解(FOCUSS)算法实现稀疏表示系数的估计,在恰当选取词典分辨率的条件下,算法可实现二次相位项的精确补偿,仿真实验验证了算法性能优于常用的非参数化自聚焦算法。

本文引用格式

韩宁 , 李宝晨 , 王立兵 , 童俊 , 郭宝锋 . 基于稀疏分解的空间目标双基地ISAR自聚焦算法[J]. 航空学报, 2018 , 39(8) : 322037 -322037 . DOI: 10.7527/S1000-6893.2018.22037

Abstract

In bistatic Inverse Synthetic Aperture Radar (ISAR) imaging of the space target, variation of the bistatic angle with time can cause defocusing of the two-dimensional image. To solve this problem, the principle for bistatic ISAR imaging of the stable space target is analyzed under the condition that the three synchronizations are realized ideally. The mechanism of influence of variation of the bistatic angle with time on defocusing of the two-dimensional image is researched, and an algorithm for autofocusing with high accuracy is proposed based on sparse decomposition. The cosine of half of the bistatic angel is approximated with Taylor expansion, and then the imaging phase is modelized as a polynomial according to the translation and rotation conditions of the space target. The second-order coefficient of the polynomial is obtained based on the sparse decomposition algorithm, and the compensation item is constructed to complete phase compensation with the obtained coefficient. Regular parameters are determined according to the L-curve criterion. High resolution factors of the redundant basis is designed based on prior information of the target size. Sparse representation coefficients are estimated with the extended generalization FOCal Underdetermined System Solver (FOCUSS) algorithm. The second-order phase item can be compensated accurately if the redundant dictionary resolution is chosen appropriately. The simulation experiment proves that performance of the algorithm proposed is prior to that of the common algorithm for non-parameter autofocusing.

参考文献

[1] 赵会朋, 王俊岭, 高梅国, 等. 基于轨道误差搜索的双基地ISAR包络对齐算法[J]. 系统工程与电子技术, 2017, 39(6):1235-1243. ZHAO H P, WANG J L, GAO M G, et al. Bistatic ISAR envelope alignment algorithm based on orbit error search[J]. Systems Engineering and Eletronics, 2017, 39(6):1235-1243(in Chinese).
[2] SIMON M P, SCHUH M J, WO A C. Bistatic ISAR images from a time-domain code[J]. IEEE Antennas & Propagation Magazine, 1995, 37(5):25-32.
[3] 马俊涛, 高梅国, 胡文华, 等. 空间目标多站ISAR优化布站与融合成像方法[J]. 电子与信息学报, 2017, 39(12):2834-2843. MA J T, GAO M G, HU W H, et al. Optimum distribution of multiple location ISAR and multi-angles fusion imaging for space target[J]. Journal of Electronics & Information Technology, 2017, 39(12):2834-2843(in Chinese).
[4] ZHANG S, SUN S, ZHANG W, et al. High-resolution bistatic ISAR image formation for high-speed and complex-motion targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 8(7):3520-3531.
[5] KANG B S, BAE J H, KANG M S, et al. Bistatic-ISAR cross-range scaling[J]. IEEE Transactions on Aerospace & Electronic Systems, 2017, 53(4):1962-1973.
[6] KANG M S, KANG B S, LEE S H, et al. Bistatic-ISAR distortion correction and range and cross-range scaling[J]. IEEE Sensors Journal, 2017, 17(16):5068-5078.
[7] BEAUDOIN C J, HORGAN T, DEMARTINIS G, et al. A prototype fully-polarimetric 160 GHz bistatic ISAR compact radar range[C]//SPIE Defense and Security. Bellingham, WA:SPIE, 2017:101880Z.
[8] KANG B S, RYU B H, KIM K T. A study on rotational motion compensation method for bistatic ISAR imaging[J]. Journal of Korean Institute of Electromagnetic Engineering & Science, 2017, 28(8):670-677.
[9] JANG M K, CHO C S. Bistatic ISAR imaging with UWB radar employing motion compensation for time-frequency transform[J]. Journal of Korean Institute of Electromagnetic Engineering & Science, 2015, 26(7):656-665.
[10] BAE J H, KANG B S, LEE S H, et al. Bistatic ISAR image reconstruction using sparse-recovery interpolation of missing data[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(3):1155-1167.
[11] YUN D J, LEE J I, JI H Y, et al. Fast bistatic ISAR image generation for realistic cad model using the shooting and bouncing ray technique[C]//Microwave Conference. Piscataway, NJ:IEEE Press, 2014:1324-1326.
[12] StAGLIANÒ D, MARTORELLA M, CASALINI E. Interferometric bistatic ISAR processing for 3D target reconstruction[C]//European Radar Conference. Piscataway, NJ:IEEE Press, 2014:161-164.
[13] ZHAO L, GAO M, MARTORELLA M, et al. Bistatic three-dimensional interferometric ISAR image reconstruction[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(2):951-961.
[14] 韩宁, 王立兵, 何强, 等. 双基角时变下的空间目标BISAR自聚焦算法[J]. 航空学报, 2012, 33(10):1864-1871. HAN N, WANG L B, HE Q, et al. BISAR autofocusing algorithm of space targets in presence of bistatic angle changes[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1864-1871(in Chinese).
[15] 董健, 尚朝轩, 高梅国, 等. 双基地ISAR成像平面研究及目标回波模型修正[J]. 电子与信息学报, 2010, 32(8):1855-1862. DONG J, SHANG C X, GAO M G, et al. The image plane analysis and echo model amendment of bistatic ISAR[J]. Journal of Electronics & Information Technology, 2010, 32(8):1855-1862(in Chinese).
[16] ZHANG Z, XU Y, YANG J, et al. A survey of sparse representation:Algorithms and applications[J]. IEEE Access, 2015, 3:490-530.
[17] 韩宁, 尚朝轩, 董健. 空间目标双基地ISAR一维距离像速度补偿方法[J]. 宇航学报, 2012, 33(4):507-514. HAN N, SHANG C X, DONG J. Bistatic ISAR speed compensation method for space target in one-dimensional range profile[J]. Journal of Astronautics, 2012, 33(4):507-514(in Chinese).
[18] 朱俊, 陈长伟. 结合总变差和组稀疏性的压缩感知重构方法[J]. 兵器装备工程学报, 2017(11):114-117, 128. ZHU J, CHEN C W. Compressive sensing reconstruction method via total variation and group sparsity[J]. Journal of Ordnance Equipment Engineering, 2017(11):114-117, 128(in Chinese).
[19] ZHANG D, GUO D, YAN K. Breath sample identification by sparse representation-based classification[J]. Sensors & Actuators B Chemical, 2017, 158(1):43-53.
[20] ZHANG H, LI J, HUANG Y, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 7(6):2056-2065.
[21] 胡磊. 基于压缩感知的高分辨雷达成像方法研究[D]. 长沙:国防科技大学, 2013:50-52. HU L. Compressed sensing-based imaging methods for high-resolution radar[D]. Changsha:National University of Defense Technology, 2013:50-52(in Chinese).
[22] 杜小勇, 胡卫东, 郁文贤. 推广的正则化FOCUSS算法及收敛性分析[J]. 系统工程与电子技术, 2005, 27(5):922-925. DU X Y, HU W D, YU W X. Generalized regularized FOCUSS algorithm and its convergence analysis[J]. Systems Engineering and Electronics, 2005, 27(5):922-925(in Chinese).
[23] 朱南海, 赵晓华. 基于遗传算法的Tikhonov正则参数优化计算[J]. 工程力学, 2009(5):25-30. ZHU N H, ZHAO X H. Optimal calculaiton of Tikhonov regularization parameter based on genetic algorithm[J]. Engineering Mechanics, 2009(5):25-30(in Chinese).
[24] 郭宝锋, 尚朝轩, 王俊岭, 等. 基于二体模型的空间目标双基地ISAR回波模拟[J]. 系统工程与电子技术, 2016, 38(8):1771-1779. GUO B F, SHANG C X, WANG J L, et al. Bistatic ISAR echo simulation of space target based on two-body model[J]. Systems Engineering and Electronics, 2016, 38(8):1771-1779(in Chinese).
[25] MARTORELLA M, BERIZZI F, HAYWOOD B. Contrast maximization based technique for 2-D ISAR autofocusing[J]. IEE Proceedings on Radar, Sonar and Navigation, 2005, 152(4):253-262.
文章导航

/