固体力学与飞行器总体设计

基于能量有限元法和虚拟模态综合法的高频冲击响应分析方法

  • 陈兆林 ,
  • 杨智春 ,
  • 王用岩 ,
  • 张新平
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 航空工业成都飞机设计研究所, 成都 610091;
    3. 航空工业陕西飞机工业(集团)公司设计院, 汉中 723213

收稿日期: 2017-11-24

  修回日期: 2018-05-02

  网络出版日期: 2018-05-02

基金资助

国家自然科学基金(11472216)

A high-frequency shock response analysis method based on energy finite element method and virtual mode synthesis and simulation

  • CHEN Zhaolin ,
  • YANG Zhichun ,
  • WANG Yongyan ,
  • ZHANG Xinping
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610091, China;
    3. AVIC Shaanxi Aircraft Industry(Group) Corporation Ltd., Hanzhong 723213, China

Received date: 2017-11-24

  Revised date: 2018-05-02

  Online published: 2018-05-02

Supported by

National Natural Science Foundation of China (11472216)

摘要

为了分析结构受到高频冲击载荷激励后的瞬态响应,提出了一种基于能量有限元法(EFEM)和虚拟模态综合(VMSS)法的高频冲击响应分析方法。通过能量有限元法进行高频稳态分析,获得结构频响函数(FRF)的频段平均值,然后结合虚拟模态综合法得到虚拟模态振型系数,最后通过Duhamel积分获得结构在高频冲击载荷作用下的瞬态响应。对一简支梁模型进行算例分析,将本文方法的结果与传统有限元法(FEM)和统计能量法(SEA)的分析结果进行对比,验证了所提方法的有效性,也表明该方法具有模型简单、分析速度快等优点。

本文引用格式

陈兆林 , 杨智春 , 王用岩 , 张新平 . 基于能量有限元法和虚拟模态综合法的高频冲击响应分析方法[J]. 航空学报, 2018 , 39(8) : 221893 -221893 . DOI: 10.7527/S1000-6893.2018.21893

Abstract

To analyze the transient response of structures under high-frequency shock load, a new method based on Energy Finite Element Method (EFEM) and Virtual Mode Synthesis and Simulation (VMSS) is proposed. The frequency band average of the Frequency Response Function (FRF) is obtained from steady-state analysis by energy finite element method, and then the virtual mode coefficients are calculated by virtual mode synthesis and simulation. Finally, the shock response of structures under high-frequency shock load is evaluated by Duhamel integral. Numerical simulations of a pinned-pinned beam are performed. The results obtained by the method proposed are compared with those obtained by the Finite Element Method (FEM) and Statistical Energy Analysis (SEA), showing that the proposed method is valid, and has the advantages of simple model, low computational cost, etc.

参考文献

[1] 聂旭涛, 熊飞峤. 运用统计能量分析法预示空空导弹舱内动力学环境[J]. 振动与冲击, 2007, 26(4):140-143. NIE X T, XIONG F Q. Predicting dynamic environment of air to air missile module with statistical energy analysis method[J]. Journal of Vibration and Shock, 2007, 26(4):140-143(in Chinese).
[2] 杨博. 冲击载荷作用下舱室噪声预报方法研究[D]. 哈尔滨:哈尔滨工程大学, 2011:41-60. YANG B. Research on prediction method of ship compartment noise subjected to shock load[D]. Harbin:Harbin Engineering University, 2011:41-60(in Chinese).
[3] 王军评, 毛勇建, 黄含军, 等. 统计能量分析法在爆炸分离冲击响应预示中的应用[J]. 振动与冲击, 2011, 28(5):414-420. WANG J P, MAO Y J, HUANG H J, et al. Application of statistical energy analysis method in prediction of pyroshock responses[J]. Journal of Vibration and Shock, 2011, 28(5):414-420(in Chinese).
[4] 彭志刚. 基于统计能量法的星箭解锁冲击响应谱分析[D]. 哈尔滨:哈尔滨工业大学, 2015:39-51. PENG Z G. Shock response spectrum analysis of unlocking about separation between satellite and rocket based on statistical energy analysis[D]. Harbin:Harbin Institute of Technology, 2015:39-51(in Chinese).
[5] 张建华. 航天产品的爆炸冲击环境技术综述[J]. 导弹与航天运载技术, 2005(3):30-36. ZHANG J H. Pyroshock environment of missiles and launch vehicles[J]. Missiles and Space Vehicles, 2005(3):30-36(in Chinese).
[6] 赵应龙, 何琳, 黄映云, 等. 船舶浮筏隔振系统冲击响应的时域计算[J]. 噪声与振动控制, 2005(2):14-17. ZHAO Y L, HE L, HUANG Y Y, et al. The computation of shock response of marine floating raft shock-resistant system in the time domain[J]. Noise and Vibration Control, 2005(2):14-17(in Chinese).
[7] 张文博. 热环境下结构高频声振响应预示的能量有限元方法研究[D]. 西安:西安交通大学, 2014:11-43. ZHANG W B. Energy finite element analysis for high frequency vibration and acoustic analysis of structures in a thermal environment[D]. Xi'an:Xi'an Jiaotong University, 2014:11-43(in Chinese).
[8] DALTON E C. Ballistic shock response prediction by an extension of statistical energy analysis[C]//63rd Shock and Vibration Symposium. Reston, VA:AIAA, 1992.
[9] DALTON E C. High frequency shock prediction in multiply-connected plate structures[C]//64th Shock and Vibration Symposium. Reston, VA:AIAA, 1993.
[10] DALTON E C, CHAMBER B S. Analysis and validation testing of impulsive load response in complex multi-compartmented structures[C]//66rd Shock and Vibration Symposium. Reston, VA:AIAA, 1995:759-767.
[11] NEFSKE D J, SUNG S H. Power flow finite element analysis of dynamic systems basic theory and application to beams[J]. Journal of Vibration Acoustics, Stress and Reliability in Design, 1989, 111:94-100.
[12] WOHLEVER J C. Vibrational power flow analysis of rods and beams[D]. Lafayette:Purdue University, 1988:16-80.
[13] WOHLEVER J C, BERNHARD R J. Mechanical energy flow models of rods and beams[J]. Journal of Sound and Vibration, 1992, 153(1):1-19.
[14] BOUTHIER O M, BERNHARD R J. Models of space-averaged energetics of plates[J]. AIAA Journal, 1992, 30(3):616-623.
[15] BOUTHIER O M, BERNHARD R J. Simple models of energy flow in vibrating membranes[J]. Journal of Sound and Vibration, 1995, 182(1):129-147.
[16] BOUTHIER O M, BERNHARD R J. Simple models of energetics of transversely vibrating plates[J]. Journal of Sound and Vibration, 1995, 182(1):149-166.
[17] HAN F, BERNHARD R J, MONGEAU L G. Energy flow analysis of vibrating beams and plates for discrete random excitations[J]. Journal of Sound and Vibration, 1997, 208(5):841-859.
[18] HAN F, MONGEAU L G, BERNHARD R J. Energy flow analysis of beams and plates for random distributed loading[J]. Journal of Fluids and Structures, 1998, 12(3):315-333.
[19] ZHANG W B, CHEN H L, ZHU D H, et al. The thermal effects on high-frequency vibration of beams using energy flow analysis[J]. Journal of Sound and Vibration, 2014, 333(9):2588-2600.
[20] WANG D, XIE M X, LI Y M. High-frequency dynamic analysis of plates in thermal environments based on energy finite element method[J]. Shock and Vibration, 2015(2):1-14.
[21] ICHCHOU M N, BOT A L, JEZEQUEL L. Energy models of one-dimensional multi-propagative systems[J]. Journal of Sound and Vibration. 1997, 201(5):535-554.
[22] CREMER L, HECKL M, PETERSSON B A T. Structure-borne sound:Structural vibrations and sound radiation at audio frequencies[M]. 3rd ed. Berlin:Springer-Verlag, 2005:149-161.
[23] PIERSOL A G, PAEZ T L. Harris' shock and vibration handbook[M]. 6th ed. New York:McGraw-Hill, 2010:542-564.
文章导航

/