流体力学与飞行力学

水平风洞中开展飞机尾旋特性研究的理论分析

  • 郭林亮 ,
  • 祝明红 ,
  • 傅澔 ,
  • 杨洪森 ,
  • 钟诚文
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心 低速空气动力研究所, 绵阳 621000

收稿日期: 2018-01-22

  修回日期: 2018-04-23

  网络出版日期: 2018-04-23

基金资助

国家重点基础研究发展计划(2015CB755800)

Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel

  • GUO Linliang ,
  • ZHU Minghong ,
  • FU Hao ,
  • YANG Hongsen ,
  • ZHONG Chengwen
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-01-22

  Revised date: 2018-04-23

  Online published: 2018-04-23

Supported by

National Key Basic Research Program of China (2015CB755800)

摘要

以某飞机尾旋特性为例,在水平风洞中利用具有3自由度的模型支撑装置开展飞机尾旋特性研究并进行理论分析;将基于3自由度装置的建模仿真结果与传统的6自由度飞行仿真、立式风洞尾旋试验结果进行对比,结果显示,三者具有较好的一致性;利用3自由度支撑装置开展飞机尾旋特性研究还可获得飞机尾旋进入和发展阶段的运动参数,可实现尾旋进入、发展及改出的全过程模拟。同时,研究了支撑装置曲杆惯量、机构摩擦和质心偏离等因素对飞机尾旋特性试验结果的影响,结果表明在曲杆及飞机模型设计时,需严格控制曲杆惯量和质心偏移,机构摩擦对试验结果的影响不大。

本文引用格式

郭林亮 , 祝明红 , 傅澔 , 杨洪森 , 钟诚文 . 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018 , 39(6) : 122030 -122030 . DOI: 10.7527/S1000-6893.2018.22030

Abstract

Theoretical analysis of investigation of characteristics of an aircraft spin using an actively controlled scaled model of a 3-DOF gimbal in the horizontal wind tunnel is given. The simulation results based on the 3-DOF rig are compared with results of the conventional 6-DOF simulation and free flight spin test, and a good agreement between them is observed. Moreover, the motion parameters during the spin entry and developing phase can be obtained using the 3-DOF rig, which enables simulation of the whole process from spin entry to developing and to recovery. Meanwhile, the effects of dynamics of the rod, gimbal friction moments and shift of the center of gravity in the model relative to the center of the gimbals are considered. The results show that the inertia of the rod and shift of the center of gravity should be strictly controlled during the design phase, and that friction has small influence on spin behaviors.

参考文献

[1] DENHAM C, OWENS D B. Rotary balance wind tunnel testing for the FASER flight research aircraft:AIAA-2016-3105[R]. Reston, VA:AIAA, 2016.
[2] 卜忱, 杜希奇, 黄丽婧, 等. 旋转流场下飞机大幅滚转振荡时的动态横向气动特性实验研究[J]. 实验流体力学, 2008, 22(1):46-54. BU C, DU X Q, HUANG L J, et al. Investigation of unsteady aerodynamic characteristics for the large amplitude rolling under rotary flow field[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1):46-54(in Chinese).
[3] 谢志江, 孙小勇, 孙海生, 等. 低速风洞动态试验的高速并联机构设计及动力学分析[J]. 航空学报, 2013, 34(3):487-494. XIE Z J, SUN X Y, SUN H S, et al. Mechanism design and dynamics analysis of high speed parallel robot for dynamic test in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):487-494(in Chinese).
[4] MURCH A M, FOSTER J V. Recent NASA research on aerodynamic modeling of post-stall and spin dynamics of large transport airplanes:AIAA-2007-0463[R]. Reston, VA:AIAA, 2007.
[5] GROEN E, LEDEGANG W, FIELD J, et al. SUPRA-Enhanced upset recovery simulation:AIAA-2012-4630[R]. Reston, VA:AIAA, 2012.
[6] ABRAMOV N B, GOMAN M G, KHRABROV A N, et al. Pushing ahead-SUPRA airplane model for upset recovery:AIAA-2012-4631[R]. Reston, VA:AIAA, 2012.
[7] PARANJAPE A A, ANANTHKRISHNAN N. Analytical criterion for aircraft spin susceptibility:AIAA-2010-7623[R]. Reston, VA:AIAA, 2010.
[8] TAPOLCAI D P, OMRAN A, NEWMAN B. Aircraft spin phenomenon analysis using nonlinearity index theory:AIAA-2012-4401[R]. Reston, VA:AIAA, 2012.
[9] RAGHEB A M, DANTSKER O D, SELIG M S. Stall/spin flight testing with a subscale aerobatic aircraft:AIAA-2013-2806[R]. Reston, VA:AIAA, 2013.
[10] BENNETT C, LAWSON N. Aircraft spin analysis-Theoretical predictions & comparison to flight test:AIAA-2017-3652[R]. Reston, VA:AIAA, 2017.
[11] RATLIFF C L, MARQUART E J. Bridging the gap between ground and flight tests:Virtual flight testing (VFT):AIAA-1995-3875[R]. Reston, VA:AIAA, 1995.
[12] MAGILL J C, WEHE S D. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston, VA:AIAA, 2002.
[13] LAWRENCE F C, MILLS B H. Status update of the AEDC virtual flight testing development program:AIAA-2002-0168[R]. Reston, VA:AIAA, 2002.
[14] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[15] GATTO A. Application of a pendulum support test rig for aircraft stability derivative estimation[J]. Journal of Aircraft, 2006, 46(3):927-934.
[16] GATTO A, LOWENBERG M H. Evaluation of a three-degree-of-freedom test rig for stability derivative estimation[J]. Journal of Aircraft, 2006, 43(6):1747-1762.
[17] PATTINSON J, LOWENBERG M H, GOMAN M G. A multi-degree-of-freedom rig for the wind tunnel determination of dynamic data:AIAA-2009-5727[R]. Reston, VA:AIAA, 2009.
[18] PATTINSON J, LOWENBERG M H, GOMAN M G. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification[J]. Journal of Aircraft, 2013, 50(2):551-566.
[19] ARAUJO-ESTRADA S A, LOWENBERG M H, NEILD S, et al. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig:AIAA-2015-0750[R]. Reston, VA:AIAA, 2015.
[20] SOHI N P. Modeling of spin modes of supersonic aircraft in horizontal wind tunnel[R].2004.
[21] GRISHIN I, KHRABROV A, KOLINKO A, et al. Wind tunnel investigation of critical flight regimes using dynamically scaled actively controlled model in 3 DOF gimbal[R].2014.
[22] 赵忠良, 吴军强, 李浩, 等. 2.4米跨声速风洞虚拟飞行试验技术初步研究[J]. 航空学报, 2016, 37(2):504-512. ZHAO Z L, WU J Q, LI H, et al. Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):504-512(in Chinese).
[23] GUO L L, ZHU M H, NIE B W, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2):602-610.
[24] 刘延柱, 潘振宽, 戈新生. 多体系统动力学[M]. 北京:高等教育出版社, 2014:173-215. LIU Y Z, PAN Z K, GE X S. Dynamics of multibody systems[M]. Beijing:High Education Press, 2014:173-215(in Chinese).
[25] WIT C C, OLSSON H, ASTROM K J, et al. A new model for control systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3):419-425.
[26] KERMANI M, PATEL R, MOALLEM M. Friction identification in robotic manipulators:Case studies[C]//Proceedings of the 2005 IEEE Conference on Control Applications. Piscataway, NJ:IEEE Press, 2005:1170-1175.
[27] 祝明红, 王勋年, 李宝, 等. ∅5 m立式风洞尾旋试验技术[J]. 实验流体力学, 2007, 21(3):49-53. ZHU M H, WANG X N, LI BAO, et al. Free-spin test technique in ∅5 m vertical wind tunnel in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):49-53(in Chinese).
[28] ZHU M H, YANG H S, WANG X N, et al. Improvements and validation of spin test techniques in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5):94-98.
文章导航

/