综述

蒙皮镜像铣削支撑技术的研究现状和发展趋势

  • 鲍岩 ,
  • 董志刚 ,
  • 朱祥龙 ,
  • 王昌瑞 ,
  • 郭东明 ,
  • 康仁科
展开
  • 大连理工大学 精密与特种加工教育部重点实验室, 大连 116024

收稿日期: 2017-10-23

  修回日期: 2017-12-29

  网络出版日期: 2018-04-22

基金资助

国家自然科学基金创新研究群体项目(51621064);国家商用飞机制造工程技术研究中心创新基金项目(201500308)

Review on support technology for mirror milling of aircraft skin

  • BAO Yan ,
  • DONG Zhigang ,
  • ZHU Xianglong ,
  • WANG Changrui ,
  • GUO Dongming ,
  • KANG Renke
Expand
  • Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Received date: 2017-10-23

  Revised date: 2017-12-29

  Online published: 2018-04-22

Supported by

Science Fund for Creative Research Groups of NSFC (51621064); National Engineering and Research Center for Commercial Aircraft Manufacturing (201500308)

摘要

镜像铣作为一种飞机蒙皮加工的新技术,是一种高效、绿色的加工方法,具有逐步取代化铣加工的趋势,是众多工业发达国家的研究热点。支撑技术是飞机蒙皮镜像铣削系统的关键技术,关系到蒙皮的尺寸精度和表面质量,直接影响蒙皮外表面的形貌。本文在阐述飞机蒙皮零件加工工艺特点的基础上,介绍了飞机蒙皮减薄技术的发展,总结了蒙皮镜像铣削加工方法的优势及国内外研究现状。在详细分析镜像铣支撑技术的研究现状的同时,指出了当前镜像铣支撑技术存在的问题与难点,预测了镜像铣支撑技术的发展趋势,为镜像铣支撑技术的深入研究提供参考和指导。

本文引用格式

鲍岩 , 董志刚 , 朱祥龙 , 王昌瑞 , 郭东明 , 康仁科 . 蒙皮镜像铣削支撑技术的研究现状和发展趋势[J]. 航空学报, 2018 , 39(4) : 21817 -021817 . DOI: 10.7527/S1000-6893.2017.21817

Abstract

As a new technology for aircraft skin processing, mirror milling is an efficient and green processing technology, and has been gradually replacing chemical milling. The support technology is a key technology for mirror milling, important for size precision and surface quality of the skin, and directly affects the appearance of the outer surface of the skin. Based on expounding the characteristics of aircraft skin and its processing technology, the development of thickness reducing technology for aircraft skin is introduced. The advantages and the state of the art of mirror milling is summarized, and the research status of support technology for mirror milling is analyzed. The current problems and difficulties of the support technology and its development trend are detailed to provide reference and guidance for further research on mirror milling support technology.

参考文献

[1] 贾玉红, 何景武. 现代飞行器制造工艺学[M]. 北京:北京航空航天大学出版社, 2010:37, 59-60. JIA Y H, HE J W. Modern aircraft manufacturing technology[M]. Beijing:Beihang University Press, 2010:37, 59-60(in Chinese).
[2] 中国锻压协会. 航空航天钣金冲压件制造技术[M]. 北京:机械工业出版社, 2013:64. Confederation of Chinese Metalforming Industry. Aerospace sheet metal manufacturing technology[M]. Beijing:China Machine Press, 2013:64(in Chinese).
[3] 戴圣龙, 张坤, 杨守杰, 等. 先进航空铝合金材料与应用[M]. 北京:国防工业出版社, 2012:163. DAI S L, ZHANG K, YANG S J, et al. Advanced aeronautical aluminum alloy materials technology and application[M]. Beijing:National Defense Industry Press, 2012:163(in Chinese).
[4] 韩志仁, 戴良景, 张凌云. 飞机大型蒙皮和壁板制造技术现状综述[J]. 航空制造技术, 2009(4):64-66. HAN Z R, DAI L J, ZHANG L Y. Current status of large aircraft skin and panel manufacturing technologies[J]. Aeronautical Manufacturing Technology, 2009(4):64-66(in Chinese).
[5] 向兵飞, 黄晶, 许家明, 等. 蒙皮铣削镜像顶撑技术研究[J]. 制造技术与机床, 2015(4):92-96. XIANG B F, HUANG J, XU J M, et al. Mirror top bracing technology in milling aircraft skin[J]. Manufacturing Technology & Machine Tool, 2015(4):92-96(in Chinese).
[6] 马文博, 余康, 罗泰. 机身蒙皮设计与镜像铣加工方法[J]. 中国科技信息, 2016(13):91-93. MA W B, YU K, LUO T. Fuselage skin design and mirror milling technology[J]. Chine Science and Technology Information, 2016(13):91-93(in Chinese).
[7] 张新娟, 段雪锋. 飞机蒙皮零件的柔性装夹及数控铣切技术[J]. 航空制造技术, 2015(S1):42-44. ZHANG X J, DUAN X F. Flexible clamping and CNC milling technology of aircraft skin[J]. Aeronautical Manufacturing Technology, 2015(S1):42-44(in Chinese).
[8] 徐明, 向兵飞, 李响, 等. 蒙皮镜像铣切系统及先进制造工艺的应用[J]. 制造技术与机床, 2014(11):40-43. XU M, XIANG B F, LI X, et al. Application of mirror milling system and advanced machining technology for aircraft skin[J]. Manufacturing Technology & Machine Tool, 2014(11):40-43(in Chinese).
[9] 陆文明, 季建霞, 赵宝华, 等. 飞机蒙皮表面的预处理及涂装[J]. 上海涂料, 2016, 54(4):13-18. LU W M, JI J X, ZHAO B H, et al. The pretreatment and coating of aircraft skin surface[J]. Shanghai Coatings, 2016, 54(4):13-18(in Chinese).
[10] 张景新, 郭沛欣, 白杰. 先进铝锂合金机身壁板结构承载能力研究[J]. 航空科学技术, 2013(3):23-26. ZHANG J X, GUO P X, BAI J. Strength evaluation of advanced aluminum-lithium fuselage panels[J]. Aeronautical Science & Technology, 2013(3):23-26(in Chinese).
[11] 谢星维, 刘莹, 柳华炎, 等. 飞机蒙皮用纤维金属层合板基体2024-T3铝合金薄板研究[J]. 热加工工艺, 2017, 46(18):111-113, 118. XIE X W, LIU Y, LIU H Y, et al. Study on fibre metal laminated plate matrix of 2024-T3 aluminum alloy sheet for aircraft skin[J]. Hot Working Technology, 2017, 46(18):111-113, 118(in Chinese).
[12] 张彤. 飞机蒙皮厚度精确加工的最新技术——以数铣替代化铣的绿色加工工艺[J]. 教练机, 2011(4):25-29. ZHANG T. Up-to-date technology for precision machining of aircraft skin thickness-Greenhouse machining technology for the CNC milling instead of chemical milling[J]. Trainer, 2011(4):25-29(in Chinese).
[13] 周凯. 飞行器大型薄壁件制造的柔性工装技术[J]. 航空制造技术, 2012(3):34-39. ZHOU K. Flexible tooling and fixture technology of large thin-wall part manufacturing for aircraft[J]. Aeronautical Manufacturing Technology, 2012(3):34-39(in Chinese).
[14] 顾诵芬. 航空航天科学技术(航空卷)[M]. 济南:山东教育出版社, 1998:3-4. GU S F. Aerospace science and technology (Volume areonautics)[M]. Ji'nan:Shandong Education Press, 1998:3-4(in Chinese).
[15] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:754-756. FAN Y Q, MEI Z Y, TAO J. Large aircraft digital manufacturing engineering[M]. Beijing:Aeronautical Industry Press, 2011:754-756(in Chinese).
[16] 北京航空制造工程研究所. 航空制造技术[M]. 北京:航空工业出版社, 2013:198. Beijing Aeronautical Manufacturing Technology Research Institute. Aeronautical manufacturing technology[M]. Beijing:Aeronautical Industry Press, 2013:198(in Chinese).
[17] 林翠, 蔡剑, 曾丰光, 等. LY12铝合金化铣工艺及加工质量影响因素[J]. 失效分析与预防, 2010(1):8-12. LIN C, CAI J, ZENG F G, et al. Chemical milling technology and influencing factors of processing quality of LY12 aluminum alloy[J]. Failure Analysis and Prevention, 2010(1):8-12(in Chinese).
[18] 《航空制造工程手册》总编委会. 航空制造工程手册(特种加工)[M]. 北京:航空工业出版社, 1993:610-620. Editorial Committee of Aeronautical Manufacturing Engineering Handbook. Aeronautical manufacturing engineering handbook (special machining)[M]. Beijing:Aeronautical Industry Press, 1993:610-620(in Chinese).
[19] 金以元. 火箭贮箱壁板化学铣切装备的设计[J]. 导弹与航天运载技术, 2009(2):52-56. JIN Y Y. Design of equipment for chemical milling of rocket tank sheets[J]. Missile and Space Vehcile, 2009(2):52-56(in Chinese).
[20] CAKIR O, YARDIMEDEN A, OZBEN T. Chemical machining[J]. Archives of Materials Science and Engineering, 2007, 28(8):499-502.
[21] PANCZUK R, FOISSAC P. Process and a device for the machining of panels:USA, 7682112B2[P]. 2010-03-23.
[22] MAHMUD A. Mechanical pocket milling of thin aluminum panel with a grasping and machining end effector[D]. Montreal:Universite De Montreal, 2015.
[23] 祝小军, 向兵飞, 汪洋化, 等. 飞机蒙皮镜像铣切原理与算法分析[J]. 教练机, 2015(2):23-27. ZHU X J, XIANG B F, WANG Y H, et al. Application and research of mirror milling technology for aircraft skin[J]. Trainer, 2015(2):23-27(in Chinese).
[24] 鲁达. 新一代飞机蒙皮绿色加工技术[J]. 航空制造技术, 2010(16):102-103. LU D. New generation green machining technology for aircraft skin[J]. Aeronautical Manufacturing Technology, 2010(16):102-103(in Chinese).
[25] MANUEL T M. Machine tool installation for supporting and machining workpieces:USA, 5163793A[P]. 1992-11-17.
[26] HAMANN J C. Process and device for machining by windowing of non-deformable thin panels:USA, 7168898B2[P]. 2007-01-30.
[27] 张志国, 徐学民. MMS:新型绿色蒙皮加工系统[J]. 航空制造技术, 2010(19):84-86. ZHANG Z G, XU X M. MMS:the latest green skin machining system[J]. Aeronautical Manufacturing Technology, 2010(19):84-86(in Chinese).
[28] 李清, 王家齐, 王焱. 数控机床及工装的发展与创新设计[J]. 航空制造技术, 2016(6):47-52. LI Q, WANG J Q, WANG Y. Development and innovation design of CNC machine tool and tooling[J]. Aeronautical Manufacturing Technology, 2016(6):47-52(in Chinese).
[29] Dufieux Industrie[EB/OL]. http://www.dufieux-industrie.com/index.php/en/.
[30] M. Torres Diseños Industriales SAU[EB/OL]. http://www.mtorres.es/en.
[31] MANUEL T M. System for machining stratified panels:EU, 1591195A1[P]. 2005-04-19.
[32] MAHMUD A, MAYER J R R, BARON L. Determining the minimum clamping force by cutting force simulation in aerospace fuselage pocket machining[J]. The International Journal of Advanced Manufacturing Technology, 2015(80):1751-1758.
[33] MAHMUD A, MAYER J R R, BARON L. Modeling of laterally sliding motion of a magnetic clamp[J]. Advances in Acoustics and Vibration, 2015:707043.
[34] MAHMUD A, MAYER J R R, BARON L. Magnetic attraction forces between permanent magnet group arrays in a mobile magnetic clamp for pocket machining[J]. Journal of Manufacturing Science and Technology, 2015(11):82-88.
[35] HERRANZ S, CAMPA F J, LOPEZ DE LACALLE L N, et al. The milling of airframe components with low rigidity:a general approach to avoid static and dynamic problems[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2005, 219(11):789-801.
[36] BRAVO U, ALTUZARRA O, LOPEZ DE LACALLE L N, et al. Stability limits of milling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools and Manufacture, 2005, 45(15):1669-1680.
[37] RATCHEV S, LIU S, HUANG W, et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15):1629-1641.
[38] RATCHEV S, LIU S, HUANG W, et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5):542-551.
[39] ARNAUD L, GONZALO O, SEGUY S, et al. Simulation of low rigidity part machining applied to thin-walled structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5-8):479-488.
[40] MUNDIM R B, BORILLE A V. An approach for reducing undesired vibrations in milling of low rigidity structures[J]. International Journal of Advanced Manufacturing Technology, 2017, 88:971-983.
[41] WAN M, ZHANG W, DANG J, et al. A unified stability prediction method for milling process with multiple delays[J]. International Journal of Machine Tools & Manufacture, 2010, 50(1):29-41.
[42] WAN M, ZHANG W. Efficient algorithms for calculations of static form errors in peripheral milling[J]. Journal of Materials Processing Technology, 2006, 171(1):156-165.
[43] WAN M, ZHANG W. Calculations of chip thickness and cutting forces in flexible end milling[J]. International Journal of Advanced Manufacturing Technology, 2006, 29(7-8):637-647.
[44] YANG Y, ZHANG W, MA Y, et al. Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces[J]. International Journal of Machine Tools & Manufacture, 2016, 109:36-48.
[45] WAN M, ZHANG W, QIN G, et al. Strategies for error prediction and error control in peripheral milling of thin-walled workpiece[J]. International Journal of Machine Tools & Manufacture, 2008, 48(12-13):1366-1374.
[46] FEI J, LIN B, YAN S, et al. Chatter prediction for milling of flexible pocket-structure[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):2721-2730.
[47] SHENG Q, ZHAO J, WANG T. Three-dimensional stability prediction and chatter analysis in milling of thin-walled plate[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):2291-2300.
[48] KANG Y, WANG Z. Two efficient iterative algorithms for error prediction in peripheral milling of thin-walled workpieces considering the in-cutting chip[J]. International Journal of Machine Tools & Manufacture, 2013, 73(73):55-61.
[49] 李迎光, 郝小忠, 周鑫, 等. 飞机蒙皮镜像铣削方法及装备:中国, ZL201410532797[P]. 2016-07-06. LI Y G, HAO X Z, ZHOU X, et al. Process and a device for the mirror milling of aircraft skin:China, ZL201410532797[P]. 2016-07-06(in Chinese).
[50] 李迎光, 郝小忠, 陈耿祥, 等. 飞机蒙皮自适应吸附装夹装置:中国, ZL201410743421[P]. 2016-09-14. LI Y G, HAO X Z, CHEN G X, et al. Adaptive adsorption and clamping device for aircraft skin:China, ZL201410743421[P]. 2016-09-14(in Chinese).
[51] 李迎光, 郝小忠, 马斯博, 等. 飞机蒙皮镜像铣削顶撑方法及装备:中国, ZL201410638069[P]. 2016-09-07. LI Y G, HAO X Z, MA S B, et al. Process and a device for the support of mirror milling of aircraft skin:China, ZL201410638069[P]. 2016-09-07(in Chinese).
[52] 李迎光, 郝小忠, 马斯博, 等. 基于多传感器的蒙皮实时自适应镜像铣削方法与检测装备:中国, ZL201410638017[P]. 2016-09-14. LI Y G, HAO X Z, MA S B, et al. Process and a testing device for the real time adaptive mirror milling based on multi sensor:China, ZL201410638017[P]. 2016-09-14(in Chinese).
[53] 李迎光, 郝小忠, 周冠妍, 等. 基于激光位移传感器的蒙皮自适应加工方法:中国, ZL201410573327[P]. 2016-07-13. LI Y G, HAO X Z, ZHOU G Y, et al. Adaptive processing of skin based on laser displacement sensors:China, ZL201410573327[P]. 2016-07-13(in Chinese).
[54] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al. Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2295-2302(in Chinese).
[55] ZHOU G Y, LI Y G, LIU C Q, et al. A feature-based automatic broken surfaces fitting method for complex aircraft skin parts[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1001-1011.
[56] 胡敏, 向兵飞, 李迎光, 等. 基于特征的快速编程技术在飞机蒙皮工件中的应用[J]. 制造技术与机床, 2016(1):148-152. HU M, XIANG B F, LI Y G, et al. Application of feature-based rapid programming technology for aircraft panels[J]. Manufacturing Technology & Machine Tool, 2016(1):148-152(in Chinese).
[57] 汪洋华, 徐明, 徐家明. 一种镜像铣切设备顶撑装置:中国, ZL201520508892[P]. 2016-01-06. WANG Y H, XU M, XU J M. Support device for mirror milling equipment:China, ZL201520508892[P]. 2016-01-06(in Chinese).
[58] 向兵飞, 徐明, 郑和兴, 等. 一种空间蒙皮防震颤支撑装置:中国, ZL201520155925[P]. 2015-07-29. XIANG B F, XU M, ZHENG H X, et al. Anti-chatter support device for mirror milling of panels:China, ZL201520155925[P]. 2015-07-29(in Chinese).
[59] 王皓, 赵勇, 陈根良, 等. 用于大型薄壁构件铣削的并联转运-平动解耦加工装备:中国, ZL201410219874[P]. 2016-04-27. WANG H, ZHAO Y, CHEN G L, et al. A parallel rotational-translational decoupling processing equipment for thin-walled part milling:China, ZL201410219874[P]. 2016-04-27(in Chinese).
[60] 王皓, 赵勇, 陈根良, 等. 用于镜像加工设备的多点柔性滚动支撑头:中国, ZL201410219875[P]. 2016-04-27. WANG H, ZHAO Y, CHEN G L, et al. Multi point flexible rolling support head for mirror processing equipment:China, ZL201410219875[P]. 2016-04-27(in Chinese).
[61] 郝金明, 赵勇, 王皓, 等. 薄壁构件镜像加工支撑机构综合刚度的分析与优化[J]. 机械设计与研究, 2015, 31(2):155-159. HAO J M, ZHAO Y, WANG H, et al. Synthetical stiffness analysis and optimization of mirror support mechanism for thin-walled structures[J]. Machine Design and Research, 2015, 31(2):155-159(in Chinese).
[62] ZHAO Y, WANG Z S, WANG H, et al. Stiffness analysis and optimization of supporting mechanism based on tricept for thin-walled part milling system[C]//The 14th IFToMM World Congress. 2015:1-7.
[63] 肖聚亮, 姚永胜, 黄田, 等. 用于镜像加工的刚柔多点随动支撑头:中国, ZL201510038101[P]. 2016-09-07. XIAO J L, YAO Y S, HUANG T, et al. Hard-soft multipoint follow-up support head used for image processing:China, ZL201510038101[P]. 2016-09-07(in Chinese).
[64] 肖聚亮, 姚永胜, 黄田, 等. 用于薄壁件栅格加工的带刚柔支撑的吸附支撑头:中国, ZL201510038103[P]. 2017-01-18. XIAO J L, YAO Y S, HUANG T, et al. Sucking support head provided with rigid and flexible supports and used for machining grids of thin-walled workpiece:China, ZL201510038103[P]. 2017-01-18(in Chinese).
[65] LAN J, LIN B, HUANG T, et al. Path planning for support heads in mirror-milling machining system[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):617-628.
[66] 王国庆, 王宇晗, 丁鹏飞, 等. 筒形薄壁工件多头镜像铣削装置:中国, ZL201410683254[P]. 2015-09-09. WANG G Q, WANG Y H, DING P F, et al. Multi head mirror milling device for barrel shaped thin-wall workpiece:China, ZL201410683254[P]. 2015-09-09(in Chinese).
[67] 王国庆, 丁鹏飞, 孙秀京, 等. 一种面向镜像铣削的双通道协调运动控制方法:中国, ZL201410680675[P]. 2016-08-24. WANG G Q, DING P F, SUN X J, et al. Dual channel coordinated motion control method for mirror milling:China, ZL201410680675[P]. 2016-08-24(in Chinese).
[68] 王国庆, 丁鹏飞, 王宇晗, 等. 一种基于数控镜像铣削的大型贮箱筒段整体制造方法:中国, ZL201410679955[P]. 2015-08-12. WANG G Q, DING P F, WANG Y H, et al. Integral manufacturing method of large storage tank section based on numerical control milling:China, ZL201410679955[P]. 2015-08-12(in Chinese).
[69] 钟柳春, 毕庆贞, 张凯, 等. 一种基于超声波测厚的薄壁件自动补偿加工方法[J]. 组合机床与自动化加工技术, 2016(10):148-150, 153. ZHONG L C, BI Q Z, ZHANG K, et al. A practical compensation method for thin-walled parts manufacture based on ultrasonic thickness measurement[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(10):148-150, 153(in Chinese).
[70] 拓璞. 镜像铣削系统[EB/OL]. http://www.topnc.com.cn/tsmmmc/.
[71] BAO Y, ZHU XL, KANG R K, et al. Optimization of support location in mirror-milling of aircraft skins[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2016, DOI:10.1177/0954405416673110.
[72] BAO Y, KANG RK, DONG Z G, et al. Model for surface topography prediction in mirror-milling of aircraft skin parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, DOI:10.1007/s00170-017-1368-9.
[73] BAO Y, KANG R K, DONG Z G, et al. Multipoint support technology for mirror milling of aircraft skins[J]. Materials and Manufacturing Processes, 2017, DOI:10.1080/10426914.2017.1388519.
[74] BAO Y, DONG Z G, KANG R K, et al. Milling force and machining deformation in mirror milling of aircraft skin[J]. Advanced Materials Research, 2016, 1136:149-155.
[75] LI Z, BAO Y, KANG R K, et al. An advanced support method of aircraft skin mirror milling-fluid lubricating support[J]. Materials Science Forum, 2016, 874:469-474.
[76] 胡福文, 李东升, 李小强, 等. 面向飞机蒙皮柔性夹持数控切边的定位仿真系统及应用[J]. 计算机集成制造系统, 2012, 18(5):993-998. HU F W, LI D S, LI X Q, et al. Locating simulation for aircraft skins NC trimming based on flexible holding fixture[J]. Computer Integrated Manufacturing Systems, 2012, 18(5):993-998(in Chinese).
[77] 门延武, 周凯. 自由曲面薄壁工件加工的柔性定位方法研究[J]. 工艺与检测, 2008(10):113-117. MEN Y W, ZHOU K. Research on flexible localizing method in free-form surface and thin-wall components machining[J]. Technology and Test, 2008(10):113-117(in Chinese).
[78] LU J B, ZHOU K. Multi-point location theory, method, and application for flexible tooling system in aircraft manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5-8):729-736.
[79] 申望, 薛贵军, 邹方, 等. 用于飞机蒙皮成形的可重构多点柔性工装设计[J]. 航空制造技术, 2016(12):62-65. SHEN W, XUE G J, ZOU F, et al. Design of reconfigurable multi-point flexible tooling for forming of aircraft skin[J]. Aeronautical Manufacturing Technology, 2016(12):62-65(in Chinese).
[80] 甄瑞, 周亮, 高栋. 飞机蒙皮加工柔性夹具系统的研制[J]. 机械制造, 2009, 47(11):68-70. ZHEN R, ZHOU L, GAO D. Research on flexible fixture system for aircraft skin machining[J]. Machinery, 2009, 47(11):68-70(in Chinese).
[81] 刘纯国, 李明哲, 隋振. 多点技术在飞机板类部件制造中的应用[J]. 塑性工程学报, 2008, 15(2):109-114. LIU C G, LI M Z, SUI Z. Application of multi-point methodology in the manufacturing of aircraft panels[J]. Journal of Plasticity Engineering, 2008, 15(2):109-114(in Chinese).
[82] 张壮志, 孔啸, 梁建光, 等. 铝合金曲面薄壁件柔性工装夹具的加工性能研究[J]. 组合机床与自动化加工技术, 2013(6):116-118. ZHANG Z Z, KONG X, LIANG J G, et al. Research on processing performance of the flexible clamp system for aluminum alloy thin-walled workpiece with curved surface[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(6):116-118(in Chinese).
[83] 汪鹏, 王焱. 薄壁类零件装夹夹具设计方法研究[J]. 航空制造技术, 2014(3):60-62, 70. WANG P, WANG Y. Research on design method of sheet part fixture[J]. Aeronautical Manufacturing Technology, 2014(3):60-62, 70(in Chinese).
[84] RAJARATNAM N, ALBERS C. Water distribution in very high velocity water jets in air[J]. Journal of Hydraulic Engineering, 1998, 124(6):647-650.
[85] LEU M C, MENG P, GESKIN E S, et al. Mathematical modeling and experimental verification of stationary water jet cleaning process[J]. Journal of Manufacturing Science and Engineering, 1998, 120(3):571-579.
[86] 苗新刚, 武美萍, 吕彦明. 基于射流支撑薄壁件镜像加工尺寸误差补偿设计[J]. 机械设计与研究, 2016, 32(5):110-114. MIAO X G, WU M P, LV Y M. Deformating compensation design in jet image machining of thin-walled parts[J]. Machine Design and Research, 2016, 32(5):110-114(in Chinese).
[87] 叶建友, 吕彦明, 杨洋. 低刚度零件切削射流支撑技术研究进展[J]. 工具技术, 2015, 49(4):3-7. YE J Y, LV Y M, YANG Y. Review of research on jet supporting technology of low rigidity parts cutting[J]. Tool Engineering, 2015, 49(4):3-7(in Chinese).
[88] 叶建友, 吕彦明, 李强, 等. 基于射流支撑的薄壁件加工变形补偿分析[J]. 机械设计与研究, 2014, 30(3):104-107. YE J Y, LV Y M, LI Q, et al. Research on compensating the deformation in thin-walled parts machining based on jet supportor[J]. Machine Design and Research, 2014, 30(3):104-107(in Chinese).
文章导航

/