[1] 贾玉红, 何景武. 现代飞行器制造工艺学[M]. 北京:北京航空航天大学出版社, 2010:37, 59-60. JIA Y H, HE J W. Modern aircraft manufacturing technology[M]. Beijing:Beihang University Press, 2010:37, 59-60(in Chinese).
[2] 中国锻压协会. 航空航天钣金冲压件制造技术[M]. 北京:机械工业出版社, 2013:64. Confederation of Chinese Metalforming Industry. Aerospace sheet metal manufacturing technology[M]. Beijing:China Machine Press, 2013:64(in Chinese).
[3] 戴圣龙, 张坤, 杨守杰, 等. 先进航空铝合金材料与应用[M]. 北京:国防工业出版社, 2012:163. DAI S L, ZHANG K, YANG S J, et al. Advanced aeronautical aluminum alloy materials technology and application[M]. Beijing:National Defense Industry Press, 2012:163(in Chinese).
[4] 韩志仁, 戴良景, 张凌云. 飞机大型蒙皮和壁板制造技术现状综述[J]. 航空制造技术, 2009(4):64-66. HAN Z R, DAI L J, ZHANG L Y. Current status of large aircraft skin and panel manufacturing technologies[J]. Aeronautical Manufacturing Technology, 2009(4):64-66(in Chinese).
[5] 向兵飞, 黄晶, 许家明, 等. 蒙皮铣削镜像顶撑技术研究[J]. 制造技术与机床, 2015(4):92-96. XIANG B F, HUANG J, XU J M, et al. Mirror top bracing technology in milling aircraft skin[J]. Manufacturing Technology & Machine Tool, 2015(4):92-96(in Chinese).
[6] 马文博, 余康, 罗泰. 机身蒙皮设计与镜像铣加工方法[J]. 中国科技信息, 2016(13):91-93. MA W B, YU K, LUO T. Fuselage skin design and mirror milling technology[J]. Chine Science and Technology Information, 2016(13):91-93(in Chinese).
[7] 张新娟, 段雪锋. 飞机蒙皮零件的柔性装夹及数控铣切技术[J]. 航空制造技术, 2015(S1):42-44. ZHANG X J, DUAN X F. Flexible clamping and CNC milling technology of aircraft skin[J]. Aeronautical Manufacturing Technology, 2015(S1):42-44(in Chinese).
[8] 徐明, 向兵飞, 李响, 等. 蒙皮镜像铣切系统及先进制造工艺的应用[J]. 制造技术与机床, 2014(11):40-43. XU M, XIANG B F, LI X, et al. Application of mirror milling system and advanced machining technology for aircraft skin[J]. Manufacturing Technology & Machine Tool, 2014(11):40-43(in Chinese).
[9] 陆文明, 季建霞, 赵宝华, 等. 飞机蒙皮表面的预处理及涂装[J]. 上海涂料, 2016, 54(4):13-18. LU W M, JI J X, ZHAO B H, et al. The pretreatment and coating of aircraft skin surface[J]. Shanghai Coatings, 2016, 54(4):13-18(in Chinese).
[10] 张景新, 郭沛欣, 白杰. 先进铝锂合金机身壁板结构承载能力研究[J]. 航空科学技术, 2013(3):23-26. ZHANG J X, GUO P X, BAI J. Strength evaluation of advanced aluminum-lithium fuselage panels[J]. Aeronautical Science & Technology, 2013(3):23-26(in Chinese).
[11] 谢星维, 刘莹, 柳华炎, 等. 飞机蒙皮用纤维金属层合板基体2024-T3铝合金薄板研究[J]. 热加工工艺, 2017, 46(18):111-113, 118. XIE X W, LIU Y, LIU H Y, et al. Study on fibre metal laminated plate matrix of 2024-T3 aluminum alloy sheet for aircraft skin[J]. Hot Working Technology, 2017, 46(18):111-113, 118(in Chinese).
[12] 张彤. 飞机蒙皮厚度精确加工的最新技术——以数铣替代化铣的绿色加工工艺[J]. 教练机, 2011(4):25-29. ZHANG T. Up-to-date technology for precision machining of aircraft skin thickness-Greenhouse machining technology for the CNC milling instead of chemical milling[J]. Trainer, 2011(4):25-29(in Chinese).
[13] 周凯. 飞行器大型薄壁件制造的柔性工装技术[J]. 航空制造技术, 2012(3):34-39. ZHOU K. Flexible tooling and fixture technology of large thin-wall part manufacturing for aircraft[J]. Aeronautical Manufacturing Technology, 2012(3):34-39(in Chinese).
[14] 顾诵芬. 航空航天科学技术(航空卷)[M]. 济南:山东教育出版社, 1998:3-4. GU S F. Aerospace science and technology (Volume areonautics)[M]. Ji'nan:Shandong Education Press, 1998:3-4(in Chinese).
[15] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:754-756. FAN Y Q, MEI Z Y, TAO J. Large aircraft digital manufacturing engineering[M]. Beijing:Aeronautical Industry Press, 2011:754-756(in Chinese).
[16] 北京航空制造工程研究所. 航空制造技术[M]. 北京:航空工业出版社, 2013:198. Beijing Aeronautical Manufacturing Technology Research Institute. Aeronautical manufacturing technology[M]. Beijing:Aeronautical Industry Press, 2013:198(in Chinese).
[17] 林翠, 蔡剑, 曾丰光, 等. LY12铝合金化铣工艺及加工质量影响因素[J]. 失效分析与预防, 2010(1):8-12. LIN C, CAI J, ZENG F G, et al. Chemical milling technology and influencing factors of processing quality of LY12 aluminum alloy[J]. Failure Analysis and Prevention, 2010(1):8-12(in Chinese).
[18] 《航空制造工程手册》总编委会. 航空制造工程手册(特种加工)[M]. 北京:航空工业出版社, 1993:610-620. Editorial Committee of Aeronautical Manufacturing Engineering Handbook. Aeronautical manufacturing engineering handbook (special machining)[M]. Beijing:Aeronautical Industry Press, 1993:610-620(in Chinese).
[19] 金以元. 火箭贮箱壁板化学铣切装备的设计[J]. 导弹与航天运载技术, 2009(2):52-56. JIN Y Y. Design of equipment for chemical milling of rocket tank sheets[J]. Missile and Space Vehcile, 2009(2):52-56(in Chinese).
[20] CAKIR O, YARDIMEDEN A, OZBEN T. Chemical machining[J]. Archives of Materials Science and Engineering, 2007, 28(8):499-502.
[21] PANCZUK R, FOISSAC P. Process and a device for the machining of panels:USA, 7682112B2[P]. 2010-03-23.
[22] MAHMUD A. Mechanical pocket milling of thin aluminum panel with a grasping and machining end effector[D]. Montreal:Universite De Montreal, 2015.
[23] 祝小军, 向兵飞, 汪洋化, 等. 飞机蒙皮镜像铣切原理与算法分析[J]. 教练机, 2015(2):23-27. ZHU X J, XIANG B F, WANG Y H, et al. Application and research of mirror milling technology for aircraft skin[J]. Trainer, 2015(2):23-27(in Chinese).
[24] 鲁达. 新一代飞机蒙皮绿色加工技术[J]. 航空制造技术, 2010(16):102-103. LU D. New generation green machining technology for aircraft skin[J]. Aeronautical Manufacturing Technology, 2010(16):102-103(in Chinese).
[25] MANUEL T M. Machine tool installation for supporting and machining workpieces:USA, 5163793A[P]. 1992-11-17.
[26] HAMANN J C. Process and device for machining by windowing of non-deformable thin panels:USA, 7168898B2[P]. 2007-01-30.
[27] 张志国, 徐学民. MMS:新型绿色蒙皮加工系统[J]. 航空制造技术, 2010(19):84-86. ZHANG Z G, XU X M. MMS:the latest green skin machining system[J]. Aeronautical Manufacturing Technology, 2010(19):84-86(in Chinese).
[28] 李清, 王家齐, 王焱. 数控机床及工装的发展与创新设计[J]. 航空制造技术, 2016(6):47-52. LI Q, WANG J Q, WANG Y. Development and innovation design of CNC machine tool and tooling[J]. Aeronautical Manufacturing Technology, 2016(6):47-52(in Chinese).
[29] Dufieux Industrie[EB/OL]. http://www.dufieux-industrie.com/index.php/en/.
[30] M. Torres Diseños Industriales SAU[EB/OL]. http://www.mtorres.es/en.
[31] MANUEL T M. System for machining stratified panels:EU, 1591195A1[P]. 2005-04-19.
[32] MAHMUD A, MAYER J R R, BARON L. Determining the minimum clamping force by cutting force simulation in aerospace fuselage pocket machining[J]. The International Journal of Advanced Manufacturing Technology, 2015(80):1751-1758.
[33] MAHMUD A, MAYER J R R, BARON L. Modeling of laterally sliding motion of a magnetic clamp[J]. Advances in Acoustics and Vibration, 2015:707043.
[34] MAHMUD A, MAYER J R R, BARON L. Magnetic attraction forces between permanent magnet group arrays in a mobile magnetic clamp for pocket machining[J]. Journal of Manufacturing Science and Technology, 2015(11):82-88.
[35] HERRANZ S, CAMPA F J, LOPEZ DE LACALLE L N, et al. The milling of airframe components with low rigidity:a general approach to avoid static and dynamic problems[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2005, 219(11):789-801.
[36] BRAVO U, ALTUZARRA O, LOPEZ DE LACALLE L N, et al. Stability limits of milling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools and Manufacture, 2005, 45(15):1669-1680.
[37] RATCHEV S, LIU S, HUANG W, et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15):1629-1641.
[38] RATCHEV S, LIU S, HUANG W, et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5):542-551.
[39] ARNAUD L, GONZALO O, SEGUY S, et al. Simulation of low rigidity part machining applied to thin-walled structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5-8):479-488.
[40] MUNDIM R B, BORILLE A V. An approach for reducing undesired vibrations in milling of low rigidity structures[J]. International Journal of Advanced Manufacturing Technology, 2017, 88:971-983.
[41] WAN M, ZHANG W, DANG J, et al. A unified stability prediction method for milling process with multiple delays[J]. International Journal of Machine Tools & Manufacture, 2010, 50(1):29-41.
[42] WAN M, ZHANG W. Efficient algorithms for calculations of static form errors in peripheral milling[J]. Journal of Materials Processing Technology, 2006, 171(1):156-165.
[43] WAN M, ZHANG W. Calculations of chip thickness and cutting forces in flexible end milling[J]. International Journal of Advanced Manufacturing Technology, 2006, 29(7-8):637-647.
[44] YANG Y, ZHANG W, MA Y, et al. Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces[J]. International Journal of Machine Tools & Manufacture, 2016, 109:36-48.
[45] WAN M, ZHANG W, QIN G, et al. Strategies for error prediction and error control in peripheral milling of thin-walled workpiece[J]. International Journal of Machine Tools & Manufacture, 2008, 48(12-13):1366-1374.
[46] FEI J, LIN B, YAN S, et al. Chatter prediction for milling of flexible pocket-structure[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):2721-2730.
[47] SHENG Q, ZHAO J, WANG T. Three-dimensional stability prediction and chatter analysis in milling of thin-walled plate[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):2291-2300.
[48] KANG Y, WANG Z. Two efficient iterative algorithms for error prediction in peripheral milling of thin-walled workpieces considering the in-cutting chip[J]. International Journal of Machine Tools & Manufacture, 2013, 73(73):55-61.
[49] 李迎光, 郝小忠, 周鑫, 等. 飞机蒙皮镜像铣削方法及装备:中国, ZL201410532797[P]. 2016-07-06. LI Y G, HAO X Z, ZHOU X, et al. Process and a device for the mirror milling of aircraft skin:China, ZL201410532797[P]. 2016-07-06(in Chinese).
[50] 李迎光, 郝小忠, 陈耿祥, 等. 飞机蒙皮自适应吸附装夹装置:中国, ZL201410743421[P]. 2016-09-14. LI Y G, HAO X Z, CHEN G X, et al. Adaptive adsorption and clamping device for aircraft skin:China, ZL201410743421[P]. 2016-09-14(in Chinese).
[51] 李迎光, 郝小忠, 马斯博, 等. 飞机蒙皮镜像铣削顶撑方法及装备:中国, ZL201410638069[P]. 2016-09-07. LI Y G, HAO X Z, MA S B, et al. Process and a device for the support of mirror milling of aircraft skin:China, ZL201410638069[P]. 2016-09-07(in Chinese).
[52] 李迎光, 郝小忠, 马斯博, 等. 基于多传感器的蒙皮实时自适应镜像铣削方法与检测装备:中国, ZL201410638017[P]. 2016-09-14. LI Y G, HAO X Z, MA S B, et al. Process and a testing device for the real time adaptive mirror milling based on multi sensor:China, ZL201410638017[P]. 2016-09-14(in Chinese).
[53] 李迎光, 郝小忠, 周冠妍, 等. 基于激光位移传感器的蒙皮自适应加工方法:中国, ZL201410573327[P]. 2016-07-13. LI Y G, HAO X Z, ZHOU G Y, et al. Adaptive processing of skin based on laser displacement sensors:China, ZL201410573327[P]. 2016-07-13(in Chinese).
[54] 刘少伟, 李迎光, 郝小忠, 等. 基于特征的蒙皮镜像铣加工残区刀轨优化方法[J]. 航空学报, 2016, 37(7):2295-2302. LIU S W, LI Y G, HAO X Z, et al. Feature-based uncut region tool path optimization method for skin parts machined by mirror milling system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2295-2302(in Chinese).
[55] ZHOU G Y, LI Y G, LIU C Q, et al. A feature-based automatic broken surfaces fitting method for complex aircraft skin parts[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1001-1011.
[56] 胡敏, 向兵飞, 李迎光, 等. 基于特征的快速编程技术在飞机蒙皮工件中的应用[J]. 制造技术与机床, 2016(1):148-152. HU M, XIANG B F, LI Y G, et al. Application of feature-based rapid programming technology for aircraft panels[J]. Manufacturing Technology & Machine Tool, 2016(1):148-152(in Chinese).
[57] 汪洋华, 徐明, 徐家明. 一种镜像铣切设备顶撑装置:中国, ZL201520508892[P]. 2016-01-06. WANG Y H, XU M, XU J M. Support device for mirror milling equipment:China, ZL201520508892[P]. 2016-01-06(in Chinese).
[58] 向兵飞, 徐明, 郑和兴, 等. 一种空间蒙皮防震颤支撑装置:中国, ZL201520155925[P]. 2015-07-29. XIANG B F, XU M, ZHENG H X, et al. Anti-chatter support device for mirror milling of panels:China, ZL201520155925[P]. 2015-07-29(in Chinese).
[59] 王皓, 赵勇, 陈根良, 等. 用于大型薄壁构件铣削的并联转运-平动解耦加工装备:中国, ZL201410219874[P]. 2016-04-27. WANG H, ZHAO Y, CHEN G L, et al. A parallel rotational-translational decoupling processing equipment for thin-walled part milling:China, ZL201410219874[P]. 2016-04-27(in Chinese).
[60] 王皓, 赵勇, 陈根良, 等. 用于镜像加工设备的多点柔性滚动支撑头:中国, ZL201410219875[P]. 2016-04-27. WANG H, ZHAO Y, CHEN G L, et al. Multi point flexible rolling support head for mirror processing equipment:China, ZL201410219875[P]. 2016-04-27(in Chinese).
[61] 郝金明, 赵勇, 王皓, 等. 薄壁构件镜像加工支撑机构综合刚度的分析与优化[J]. 机械设计与研究, 2015, 31(2):155-159. HAO J M, ZHAO Y, WANG H, et al. Synthetical stiffness analysis and optimization of mirror support mechanism for thin-walled structures[J]. Machine Design and Research, 2015, 31(2):155-159(in Chinese).
[62] ZHAO Y, WANG Z S, WANG H, et al. Stiffness analysis and optimization of supporting mechanism based on tricept for thin-walled part milling system[C]//The 14th IFToMM World Congress. 2015:1-7.
[63] 肖聚亮, 姚永胜, 黄田, 等. 用于镜像加工的刚柔多点随动支撑头:中国, ZL201510038101[P]. 2016-09-07. XIAO J L, YAO Y S, HUANG T, et al. Hard-soft multipoint follow-up support head used for image processing:China, ZL201510038101[P]. 2016-09-07(in Chinese).
[64] 肖聚亮, 姚永胜, 黄田, 等. 用于薄壁件栅格加工的带刚柔支撑的吸附支撑头:中国, ZL201510038103[P]. 2017-01-18. XIAO J L, YAO Y S, HUANG T, et al. Sucking support head provided with rigid and flexible supports and used for machining grids of thin-walled workpiece:China, ZL201510038103[P]. 2017-01-18(in Chinese).
[65] LAN J, LIN B, HUANG T, et al. Path planning for support heads in mirror-milling machining system[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):617-628.
[66] 王国庆, 王宇晗, 丁鹏飞, 等. 筒形薄壁工件多头镜像铣削装置:中国, ZL201410683254[P]. 2015-09-09. WANG G Q, WANG Y H, DING P F, et al. Multi head mirror milling device for barrel shaped thin-wall workpiece:China, ZL201410683254[P]. 2015-09-09(in Chinese).
[67] 王国庆, 丁鹏飞, 孙秀京, 等. 一种面向镜像铣削的双通道协调运动控制方法:中国, ZL201410680675[P]. 2016-08-24. WANG G Q, DING P F, SUN X J, et al. Dual channel coordinated motion control method for mirror milling:China, ZL201410680675[P]. 2016-08-24(in Chinese).
[68] 王国庆, 丁鹏飞, 王宇晗, 等. 一种基于数控镜像铣削的大型贮箱筒段整体制造方法:中国, ZL201410679955[P]. 2015-08-12. WANG G Q, DING P F, WANG Y H, et al. Integral manufacturing method of large storage tank section based on numerical control milling:China, ZL201410679955[P]. 2015-08-12(in Chinese).
[69] 钟柳春, 毕庆贞, 张凯, 等. 一种基于超声波测厚的薄壁件自动补偿加工方法[J]. 组合机床与自动化加工技术, 2016(10):148-150, 153. ZHONG L C, BI Q Z, ZHANG K, et al. A practical compensation method for thin-walled parts manufacture based on ultrasonic thickness measurement[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(10):148-150, 153(in Chinese).
[70] 拓璞. 镜像铣削系统[EB/OL]. http://www.topnc.com.cn/tsmmmc/.
[71] BAO Y, ZHU XL, KANG R K, et al. Optimization of support location in mirror-milling of aircraft skins[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2016, DOI:10.1177/0954405416673110.
[72] BAO Y, KANG RK, DONG Z G, et al. Model for surface topography prediction in mirror-milling of aircraft skin parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, DOI:10.1007/s00170-017-1368-9.
[73] BAO Y, KANG R K, DONG Z G, et al. Multipoint support technology for mirror milling of aircraft skins[J]. Materials and Manufacturing Processes, 2017, DOI:10.1080/10426914.2017.1388519.
[74] BAO Y, DONG Z G, KANG R K, et al. Milling force and machining deformation in mirror milling of aircraft skin[J]. Advanced Materials Research, 2016, 1136:149-155.
[75] LI Z, BAO Y, KANG R K, et al. An advanced support method of aircraft skin mirror milling-fluid lubricating support[J]. Materials Science Forum, 2016, 874:469-474.
[76] 胡福文, 李东升, 李小强, 等. 面向飞机蒙皮柔性夹持数控切边的定位仿真系统及应用[J]. 计算机集成制造系统, 2012, 18(5):993-998. HU F W, LI D S, LI X Q, et al. Locating simulation for aircraft skins NC trimming based on flexible holding fixture[J]. Computer Integrated Manufacturing Systems, 2012, 18(5):993-998(in Chinese).
[77] 门延武, 周凯. 自由曲面薄壁工件加工的柔性定位方法研究[J]. 工艺与检测, 2008(10):113-117. MEN Y W, ZHOU K. Research on flexible localizing method in free-form surface and thin-wall components machining[J]. Technology and Test, 2008(10):113-117(in Chinese).
[78] LU J B, ZHOU K. Multi-point location theory, method, and application for flexible tooling system in aircraft manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5-8):729-736.
[79] 申望, 薛贵军, 邹方, 等. 用于飞机蒙皮成形的可重构多点柔性工装设计[J]. 航空制造技术, 2016(12):62-65. SHEN W, XUE G J, ZOU F, et al. Design of reconfigurable multi-point flexible tooling for forming of aircraft skin[J]. Aeronautical Manufacturing Technology, 2016(12):62-65(in Chinese).
[80] 甄瑞, 周亮, 高栋. 飞机蒙皮加工柔性夹具系统的研制[J]. 机械制造, 2009, 47(11):68-70. ZHEN R, ZHOU L, GAO D. Research on flexible fixture system for aircraft skin machining[J]. Machinery, 2009, 47(11):68-70(in Chinese).
[81] 刘纯国, 李明哲, 隋振. 多点技术在飞机板类部件制造中的应用[J]. 塑性工程学报, 2008, 15(2):109-114. LIU C G, LI M Z, SUI Z. Application of multi-point methodology in the manufacturing of aircraft panels[J]. Journal of Plasticity Engineering, 2008, 15(2):109-114(in Chinese).
[82] 张壮志, 孔啸, 梁建光, 等. 铝合金曲面薄壁件柔性工装夹具的加工性能研究[J]. 组合机床与自动化加工技术, 2013(6):116-118. ZHANG Z Z, KONG X, LIANG J G, et al. Research on processing performance of the flexible clamp system for aluminum alloy thin-walled workpiece with curved surface[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(6):116-118(in Chinese).
[83] 汪鹏, 王焱. 薄壁类零件装夹夹具设计方法研究[J]. 航空制造技术, 2014(3):60-62, 70. WANG P, WANG Y. Research on design method of sheet part fixture[J]. Aeronautical Manufacturing Technology, 2014(3):60-62, 70(in Chinese).
[84] RAJARATNAM N, ALBERS C. Water distribution in very high velocity water jets in air[J]. Journal of Hydraulic Engineering, 1998, 124(6):647-650.
[85] LEU M C, MENG P, GESKIN E S, et al. Mathematical modeling and experimental verification of stationary water jet cleaning process[J]. Journal of Manufacturing Science and Engineering, 1998, 120(3):571-579.
[86] 苗新刚, 武美萍, 吕彦明. 基于射流支撑薄壁件镜像加工尺寸误差补偿设计[J]. 机械设计与研究, 2016, 32(5):110-114. MIAO X G, WU M P, LV Y M. Deformating compensation design in jet image machining of thin-walled parts[J]. Machine Design and Research, 2016, 32(5):110-114(in Chinese).
[87] 叶建友, 吕彦明, 杨洋. 低刚度零件切削射流支撑技术研究进展[J]. 工具技术, 2015, 49(4):3-7. YE J Y, LV Y M, YANG Y. Review of research on jet supporting technology of low rigidity parts cutting[J]. Tool Engineering, 2015, 49(4):3-7(in Chinese).
[88] 叶建友, 吕彦明, 李强, 等. 基于射流支撑的薄壁件加工变形补偿分析[J]. 机械设计与研究, 2014, 30(3):104-107. YE J Y, LV Y M, LI Q, et al. Research on compensating the deformation in thin-walled parts machining based on jet supportor[J]. Machine Design and Research, 2014, 30(3):104-107(in Chinese).