材料工程与机械制造

钛合金铣削刀具/工件接触区域温度预测

  • 刘具龙 ,
  • 张璧 ,
  • 白倩 ,
  • 程博
展开
  • 1. 大连理工大学 精密与特种加工教育部重点实验室, 大连 116024;
    2. 南方科技大学 机械与能源工程系, 深圳 518055

收稿日期: 2018-03-08

  修回日期: 2018-03-26

  网络出版日期: 2018-04-09

基金资助

国家自然科学基金(51605077);科学挑战专题(JCKY2016212A506-0101);中央高校基本科研业务费专项资金(DUT17JC01);国家自然科学基金创新研究群体项目(51621064)

Temperature prediction of tool/workpiece contact zone in titanium milling

  • LIU Julong ,
  • ZHANG Bi ,
  • BAI Qian ,
  • CHENG Bo
Expand
  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China;
    2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Received date: 2018-03-08

  Revised date: 2018-03-26

  Online published: 2018-04-09

Supported by

National Natural Science Foundation of China (51605077); Science Challenge Project (JCKY2016212A506-0101); The Fundamental Research Funds for the Central Universities (DUT17JC01); Science Fund for Creative Research Groups of NSFC (51621064)

摘要

钛合金(Ti-6Al-4V)因其优良的综合性能广泛应用于航空航天领域中,然而由于其导热系数低、弹性模量低等特性,铣削加工过程中刀具/工件接触区域温度过高,从而导致刀具磨损严重,影响已加工表面质量。因此研究切削过程中刀具/工件接触区域温度具有重要意义。从切削机理出发,将切削区域的3个热源等效为螺旋线热源,其中热流密度计算类比铣削力预测模型中铣削力计算方法,提出包含铣削热系数的热流密度计算模型,并通过实验标定铣削热系数,结果表明热流密度随切削厚度增加接近于线性增加。建立刀具/工件接触区域温度预测模型,通过半人工热电偶测温实验对模型的可行性与准确性进行了验证,实验值与预测值的相对误差在10%之内。提高了刀具/工件接触区域温度的计算精度,并为切削参数的合理选择提供理论基础。

本文引用格式

刘具龙 , 张璧 , 白倩 , 程博 . 钛合金铣削刀具/工件接触区域温度预测[J]. 航空学报, 2018 , 39(12) : 422128 -422128 . DOI: 10.7527/S1000-6893.2018.22128

Abstract

Titanium alloy (Ti-6Al-4V) is widely used in the aviation and aerospace industry because of its outstanding overall performance. However, due to its intrinsic characteristics of low thermal conductivity and low elastic modulus, a titanium alloy is difficult to machine, which is featured by the elevated temperature in the machining zone, severe tool wear, and poor surface finish of a machined part. Therefore, it is of a great significance to study the temperature of the tool/workpiece contact area in the milling process. In this study, the three heat sources in the machining zone are assumed spiral-line shaped. A closed-form model, similar to the milling force prediction model, is proposed to calculate the heat flux density and milling heat coefficients. Milling experiments are conducted to calibrate the milling heat coefficients. The results show that the heat flux density is approximately linearly increased with the increase of cutting thickness. A model for predicting the temperature in the machining zone is proposed and validated by experiments using semi-artificial thermocouples. The relative errors of experimental values and predictive values are within 10%. This study offers a guidance to determination of the temperature in the machining zone and optimization of the process parameters in machining processes.

参考文献

[1] EDKINS K D, RENSBURG N J, LAUBSCHER R F. Evaluating the subsurface microstructure of machined Ti-6Al-4V[J]. Procedia CIRP, 2014, 13:270-275.
[2] 陈燕, 杨树宝, 傅玉灿, 等. 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013, 34(9):2230-2240. CHEN Y, YANG S B, FU Y C, et al. FEM estimation of tool wear in high speed cutting of Ti6Al4V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2230-2240(in Chinese).
[3] SUN Y J, SUN J, LI J F, et al. An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6Al4V by applying semi-artificial thermocouple[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(5-8):765-773.
[4] PATIL S, JADHAV S, KEKADE S, et al. The influence of cutting heat on the surface integrity during machining of titanium alloy Ti6Al4V[J]. Procedia Manufacturing, 2016, 5:857-869.
[5] 鞠华伟. 热管式立铣刀温度场及动态特性研究[D]. 济南:山东大学, 2012:13-23. JU H W. Research on the temperature field and dynamics characteristics of heat pipe end mill[D]. Jinan:Shandong University, 2012:13-23(in Chinese).
[6] 阎海鹏. 高速铣削铝合金切削温度的研究[D]. 南京:南京理工大学, 2004:19-34. YAN H P. Research on the temperature of high-speed milling of aluminum-alloys[D]. Nanjing:Nanjing University of Science and Technology, 2004:19-34(in Chinese).
[7] JIAO L, WANG X B, QIAN Y B, et al. Modelling and analysis for the temperature field of the machined surface in the face milling of aluminium alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(9-12):1797-1808.
[8] 毕运波, 方强, 董辉跃, 等. 航空铝合金高速铣削温度场的三维有限元模拟及试验研究[J]. 机械工程学报, 2010, 46(7):160-165. BI Y B, FANG Q, DONG H Y, et al. Research on 3D numerical simulation and experiment of cutting temperature for high speed milling of aerospace aluminum alloy[J]. Journal of Mechanical Engineering, 2010, 46(7):160-165(in Chinese).
[9] LIN S, PENG F Y, WEN J, et al. An investigation of workpiece temperature variation in end milling consid-ering flank rubbing effect[J]. International Journal of Machine Tools & Manufacture, 2013, 73(7):71-86.
[10] LIU J, CHEN G, JI C H, et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2014, 86:89-103.
[11] YAN R, ZENG H H, PENG F Y, et al. Analytical mod-eling and experimental validation of workpiece temperature variation in bull-nose end milling[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(1-4):155-168.
[12] COZ G L, MARINESCU M, DEVILLEZ A, et al. Measuring temperature of rotating cutting tools:Application to MQL drilling and dry milling of aerospace alloys[J]. Applied Thermal Engineering, 2012, 36(1):434-441.
[13] KARAGUZEL U, BAKKAL M, BUDAK E. Modeling and measurement of cutting temperatures in milling[J]. Procedia CIRP, 2016, 46:173-176.
[14] LI L, CHANG H, WANG M, et al. Temperature measurement in high speed milling Ti6Al4V[J]. Key Engineering Materials, 2004, 259-260:804-808.
[15] MA Y, FENG P F, ZHANG J F, et al. Prediction of sur-face residual stress after end milling based on cutting force and temperature[J]. Journal of Materials Processing Technology, 2016, 235:41-48.
[16] SATO M, UEDA T, TANAKA H. An experimental technique for the measurement of temperature on CBN tool face in end milling[J]. International Journal of Machine Tools & Manufacture, 2007, 47(14):2071-2076.
[17] 王震宇. 高速立铣切削刀具温度场建模与实时在线温度测量技术研究[D]. 哈尔滨:哈尔滨理工大学, 2015:15-22. WANG Z Y. Study on the temperature field modeling and the real-time online temperature measuring technique for the high speed end mill[D]. Harbin:Harbin University of Science and Technology, 2015:15-22(in Chinese).
[18] ABUKHSHIM N A, MATIVENGA P T, SHEIKH M A. Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8):782-800.
[19] SHAW M C. Metal cutting principles[M]. Oxford:Clarendon Press, 1984:15-43.
[20] ALTINTAS Y. 数控技术与制造自动化[M]. 罗学科, 译. 北京:化学工业出版社, 2002:26-35. ALTINTAS Y. Manufacturing automationmetal cutting mechanics, machine tool vibrations, and CNC design[M]. LUO X K, translated. Beijing:Chemical Industry Press, 2002:26-35(in Chinese).
[21] 舒畅. 高速铣削钛合金的切削温度研究[D]. 南京:南京航空航天大学, 2005:39-50. SHU C. Research on cutting temperature in high speed milling of titanium alloys[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005:39-50(in Chinese).
[22] RICHARDSON D J, KEAVEY M A, DAILAMI F. Modelling of cutting induced workpiece temperatures for dry milling[J]. International Journal of Machine Tools & Manufacture, 2006, 46(10):1139-1145.
[23] 杨升, 董琼, 彭芳瑜, 等. 超高强度钢立铣工件温度分析及对加工表面质量的影响[J]. 航空学报, 2015, 36(5):1722-1732. YANG S, DONG Q, PENG F Y, et al. Workpiece temperature analysis and its impact on machined surface quality of ultra-high strength steel in end milling[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1722-1732(in Chinese).
[24] SUNDQVIST B. Thermal diffusivity and thermal con-ductivity of Chromel, Alumel, and Constantan in the range 100-450 K[J]. Journal of Applied Physics, 1992, 72(2):539-545.
[25] SUI S C, FENG P F. The influences of tool wear on Ti6Al4V cutting temperature and burn defect[J]. Inter-national Journal of Advanced Manufacturing Technology, 2016, 85(9-12):1-8.
[26] CÔTÉ J, KONRAD J M. Thermal conductivity of base-course materials[J]. Canadian Geotechnical Journal, 2005, 42(1):61-78.
[27] 耿国盛. 钛合金高速铣削技术的基础研究[D]. 南京:南京航空航天大学, 2006:40-50. GENG G S. Fundamental research on high speed milling of titanium alloys[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006:40-50(in Chinese).
文章导航

/