New micro thrusters are vital force of micro/nano satellites in the future. Thrust measurement is very important support in the design, development and application of micro thrusters. In the design stage, the steady-state force working time of the thruster is sometimes difficult to match the setting time of the mechanical and direct measurement system. Therefore, the steady-state force cannot be obtained by the steady-state response. A reduction method for micro steady-state thrust is proposed based on the dynamic compensation technique. The relation between the working time and value of the steady-state thrust and the steady-state response of the measurement is analyzed. The design principles of the compensation filter and the steady-state thrust reduction steps are provided. Experiments are carried out to verify the method. The results show that when the working time of the steady-state thrust is longer than 0.25 times of the natural period of the measurement system and shorter than the setting time of the measurement system, the final output of the equivalent measurement system using the compensation filter can reach a steady state, and the range of the steady-state thrust can be obtained through the final steady-state output.
[1] 姚保寅, 李辉, 许红英, 等. 基于微机电系统技术的微推进器发展简析[J]. 国际太空, 2016(3):23-26. YAO B Y, LI H, XU H Y, et al. Development of MEMS micro thruster[J]. Space International, 2016(3):23-26(in Chinese).
[2] 范林东, 杨博, 苗峻, 等. 基于SiC MEMS阵列的高精度微纳卫星编队保持[J]. 中国空间科学技术, 2016, 36(2):37-45. FAN L D, YANG B, MIAO J, et al. High precision micro-nano satellite formation keeping based on SiC MEMS micro thruster array[J]. Chinese Space Science and Technology, 2016, 36(2):37-45(in Chinese).
[3] 洪延姬, 王广宇, 窦志国. 激光烧蚀微推力器研究进展[J]. 航空学报, 2009, 30(9):1555-1564. HONG Y J, WANG G Y, DOU Z G. State of art of laser ablation microthruster[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1555-1564(in Chinese).
[4] TAJMAR M, FIEDLER G. Direct thrust measurement of an EM drive and evaluation of possible side-effects:AIAA-2015-4083[R]. Reston, VA:AIAA, 2015.
[5] BRADY D A, WHITE H G, MARCH P, et al. Anomalous thrust production from an RF test device measured on a low-thrust torsion pendulum:AIAA-2014-4029[R]. Reston, VA:AIAA, 2014.
[6] 洪延姬, 周伟静, 王广宇. 微推力测量方法及关键问题分析[J]. 航空学报, 2013, 34(10):2287-2299. HONG Y J, ZHOU W J, WANG G Y. Methods of micro measurement and analysis of its key issues[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2287-2299(in Chinese).
[7] POLK J E, PANCOTTI A, HAAG T, et al. Recommended practices in thrust measurements[C]//The 33rd International Electic Propulsion Conference. 2013:1-19.
[8] 汤海滨, 刘畅, 向民, 等. 微推力全弹性测量装置[J]. 推进技术, 2007, 28(6):703-706. TANG H B, LIU C, XIANG M, et al. Full elastic microthrust measurement equipment[J]. Journal of Propulsion Technology, 2007, 28(6):703-706(in Chinese).
[9] 杨元侠. 微牛顿量级推进器的推力性能研究[D]. 武汉:华中科技大学, 2012:17-18. YANG Y X. Researches on the thrust and impulse performances of micro-newton thrusters[D]. Wuhan:Huazhong University of Science and Technology, 2012:17-18(in Chinese).
[10] YANG Y X, TU L C, YANG S Q, et al. A torsion balance for impulse and thrust measurements of micro-Newton thrusters[J]. Review of Scientific Instrument, 2012, 83(1):015105.
[11] SONI J, ROY S. Design and characterization of a nano-Newton resolution thrust stand[J]. Review of Scientific Instruments, 2013, 84(9):095103.
[12] PHIPPS C, LUKE J, LIPPERT T, et al. Micropropulsion using a laser ablation jet[J]. Journal of Propulsion and Power, 2004, 20(6):1000-1011.
[13] KOIZUMI H, KOMURASAKI K, ARAKAWA Y. Development of thrust stand for low impulse measurement from microthrusters[J]. Review of Scientific Instruments, 2004, 75(10):3185-3190.
[14] CIARALLI S, COLETTI M, GABRIEL S B. An impulsive thrust balance for applications of micro-pulsed plasma thrusters[J]. Measurement Science and Technology, 2013, 24(11):115003.
[15] 王广宇, 洪延姬. 微冲量测量的建模误差分析[J]. 推进技术, 2009, 30(4):509-512. WANG G Y, HONG Y J. Modeling error analysis of micro-impulse measurements[J]. Journal of Propulsion Technology, 2009, 30(4):509-512(in Chinese).
[16] JAMES E P, ANTHONY P, THOMAS H, et al. Recommended practice for thrust measurement in electric propulsion testing[J]. Journal of Propulsion and Power, 2017, 33(3):1-17.
[17] TAJMAR M, FIEDLER G. Direct thrust measurements of an EM drive and evaluation of possible side-effects:AIAA-2015-4083[R]. Reston, VA:AIAA, 2015.
[18] 王宇, 尤政, 洪延姬.一种实时测量微推力瞬时值的方法[J]. 推进技术, 2010, 31(3):2257-2262. WANG Y, YOU Z, HONG Y J. A method of real time measurement for transient microthrust[J]. Journal of Propulsion Technology, 2010, 31(3):2257-2262(in Chinese).
[19] 黄俊钦. 测试系统动力学及应用[M]. 北京:国防工业出版社, 2013:10, 51-90. HUANG J Q. Measurement system dynamics and it's application[M]. Beijing:National Defense Industry Press, 2013:10, 51-90(in Chinese).
[20] 洪延姬, 金星, 叶继飞, 等. 微推力和微冲量测量误差分析方法[M]. 北京:科学出版社, 2017:176. HONG Y J, JIN X, YE J F, et al. Analysis methods for micro-thrust and micro-impulse measurement errors[M]. Beijing:Science Press, 2017:176(in Chinese).
[21] 金星, 洪延姬, 周伟静, 等. 一种用于微小推力冲量测量的扭摆系统参数标定方法[J]. 推进技术, 2015, 36(10):1554-1559. JIN X, HONG Y J, ZHOU W J, et al. A parameter calibration method for torsion pendulum using in micro thrust and impulse measurement[J]. Journal of Propulsion Technology, 2015, 36(10):1554-1559(in Chinese).
[22] ZHOU W J, HONG Y J, CHANG H. A microNewton thrust stand for average thrust measurement of pulsed microthruster[J]. Review of Scientific Instruments, 2013, 84(12):407-434.