材料工程与机械制造

基于有向点集的多面多孔式装配偏差分析与协调

  • 崔志卓 ,
  • 杜福洲 ,
  • 熊涛
展开
  • 1. 北京航空航天大学 机械工程及自动化学院, 北京 100083;
    2. 中国空间技术研究院 北京卫星环境工程研究所, 北京 100094

收稿日期: 2017-11-29

  修回日期: 2018-03-20

  网络出版日期: 2018-03-19

基金资助

国防预研项目(160341423008)

Analysis and coordination of assembly deviation of multi plane-and-holes assembly based on orientation points group

  • CUI Zhizhuo ,
  • DU Fuzhou ,
  • XIONG Tao
Expand
  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
    2. Beijing Institute of Spacecraft Environment Engineering, China Academy of Space Technology, Beijing 100094, China

Received date: 2017-11-29

  Revised date: 2018-03-20

  Online published: 2018-03-19

Supported by

National Defence Pre-research Foundation (160341423008)

摘要

多面多孔式装配是航天航空等大尺度部件装配/装调常见的连接形式之一,其空间装配关系复杂,调配环节多且存在耦合,以试错式的装配作业方式存在难度大、需反复试装与调配、装配质量一致性差、装配效率低等问题。采用"有向点"表征轴/孔配合的空间装配关系,提出了一种基于有向点集的多面多孔式装配协调数学模型,通过奇异值分解(SVD)分解法对基于有向点集的协调模型进行最优匹配运算,给出了装配调整量的计算方法。最后,以实际工程需求为应用背景,在实验室环境下进行了多面多孔式装配协调试验,结果表明基于测量数据的装配偏差分析与装配调整量计算方法可行。

本文引用格式

崔志卓 , 杜福洲 , 熊涛 . 基于有向点集的多面多孔式装配偏差分析与协调[J]. 航空学报, 2018 , 39(7) : 421899 -421899 . DOI: 10.7527/S1000-6893.2018.21899

Abstract

Multi plane-and-holes assembly is a common connection process in assembly of large-scale aircraft or spacecraft products, and has many adjustment chains and complex assembly relationships. The trial and error mode of assembly work is difficult and needs to be repeated and adjusted, so the quality of assembly is poor and the assembly efficiency is low. This paper proposes the concept of "orientation point" to represent the position and posture of the hole or shaft. A multi plane-and-holes assembly mathematical model is developed based on the "orientation points" group. The Singular Value Decomposition (SVD) method is used to obtain the best-fit of orientation points groups. The calculation method for adjustment amount is given. According to the practical engineering requirement, a multi plane-and-holes assembly experiment is conducted in the laboratory environment. Experimental results show that the proposed methods are feasible for assembly deviation analysis and adjustment amount calculation based on measure data.

参考文献

[1] ZHANG D, MAROPOULOS P G, HILL M. Random uncertainty propagation in estimates of sphere parameters from coordinate measurements[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12):1362-1368.
[2] WANG Z, MASTROGIACOMO L, FRANCESCHINI L, et al. Experimental comparison of dynamic tracking performance of iGPS and laser tracker[J]. International Journal of Advanced Manufacturing Technology, 2011, 56(1-4):205-213.
[3] 杜福洲, 陈哲涵, 唐晓青. iGPS测量场精度分析及其应用研究[J]. 航空学报, 2012, 33(9):1737-1745. DU F Z, CHEN Z H, TANG X Q. Precision analysis of iGPS measurement field and its application[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1737-1745(in Chinese).
[4] MEI Z Y, MAROPOULOS P G. Review of the application of flexible, measurement-assisted assembly technology in aircraft manufacturing[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2014, 228(10):1185-1197.
[5] MAROPOULOS P G, MUELANER J E, SUMMERS M D, et al. A new paradigm in large-scale assembly-Research priorities in measurement assisted assembly[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(1-4):621-633.
[6] CHEN Z H. A digital metrology process model (MPM) for measuring planning and data analysis and its application with a computer-aided system[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8):1967-1977.
[7] 朱永国. 飞机大部件自动对接若干关键技术研究[D]. 南京:南京航空航天大学, 2011:12-23. ZHU Y G. Research on some key techniques on aircraft large part automatic joining[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:12-23(in Chinese).
[8] MARGUET B, RIBERE B. Measurement-assisted assembly applications on airbus final assembly lines[J]. SAE Transactions, 2003, 112(1):372-375.
[9] 朱绪胜, 郑联语. 基于关键装配特性的大型零部件最佳装配位姿多目标优化算法[J]. 航空学报, 2012, 33(9):1726-1736. ZHU X S, ZHENG L Y. Multiple-objective optimization algorithm based on key assembly characteristics to posture best fit for large component assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1726-1736(in Chinese).
[10] CHEN Z H, DU F Z, TANG X Q. Position and orientation best-fitting based on deterministic theory during large scale assembly[J]. Journal of Intelligent Manufacturing, 2018, 29(4):827-837.
[11] 洪军, 郭俊康, 刘志刚, 等. 基于状态空间模型的精密机床装配精度预测与调整工艺[J]. 机械工程学报, 2013, 49(6):114-121. HONG J, GUO J K, LIU Z G, et al. Assembly accuracy prediction and adjustment process modeling of precision machine tool based on state space model[J]. Journal of Mechanical Engineering, 2013, 49(6):114-121(in Chinese).
[12] 刘伟东, 宁汝新, 刘检华, 等. 机械装配偏差源及其偏差传递机理分析[J]. 机械工程学报, 2012, 48(1):156-168. LIU W D, NING R X, LIU J H, et al. Mechanism analysis of deviation sourcing and propagation for mechanical assembly[J]. Journal of Mechanical Engineering, 2012, 48(1):156-168(in Chinese).
[13] WANG Q, HUANG P, LI J X, et al. Assembly accuracy analysis for small components with a planar surface in large-scale metrology[J]. Measurement Science and Technology, 2016, 27(4):045006.
[14] 刘伟东, 宁汝新, 刘检华, 等. 计算机辅助航天器舱段连接精度计算与分析[J]. 计算机集成制造系统, 2011, 17(4):732-739. LIU W D, NING R X, LIU J H, et al. Computer aided analysis for connection precision of spacecraft section[J]. Computer Integrated Manufacturing Systems, 2011, 17(4):732-739(in Chinese).
[15] WANG Q, KEOGH P S, MAROPOULOS P G, et al. An assembly gap control method based on posture alignment of wing panels in aircraft assembly[J]. Assembly Automation, 2017, 37(4):422-433.
[16] WANG Z, MAROPOULOS P G. Real-time error compensation of a three-axis machine tool using a laser tracker[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(1-4):919-933.
[17] WANG Z, MAROPOULOS P G. Real-time laser tracker compensation of a 3-axis positioning system-Dynamic accuracy characterization[J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1413-1420.
[18] 张玮, 王志国, 谭昌柏, 等. 基于夹具主动定位补偿的飞机柔性件装配偏差优化方法[J]. 航空学报, 2017, 38(6):420862. ZHANG W, WANG Z G, TAN C B, et al. Assembly variation optimization method of aircraft compliant parts based on active locating compensation of fixture[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):420862(in Chinese).
[19] 高航, 王建, 杨宇星, 等. 垂直度误差对复合材料单钉连接性能的影响[J]. 航空学报, 2017, 38(2):420183. GAO H, WANG J, YANG Y X, et al. Effect of perpendicularity error of hole on mechanical behavior of single-lap single-bolt composite joints[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):420183(in Chinese).
[20] 费燕琼, 赵锡芳, 蔡宗耀. 多轴孔插入多面约束复杂装配分析[J]. 机械设计, 2001, 18(3):25-27. FEI Y Q, ZHAO X F, CAI Z Y. Complicated assembly analysis on multiple peg-in-hole insertion with multi-sided constraints[J]. Mechanism Design, 2001, 18(3):25-27(in Chinese).
[21] 赵东平, 田锡天, 耿俊浩. 基于间隙连接件和多维矢量环的机构装配精度预测[J]. 计算机集成制造系统, 2015, 21(4):963-970. ZHAO D P, TIAN X T, GENG J H. Kinematic assembly precision prediction based on gap connectors and multidimensional vector loop[J]. Computer Integrated Manufacturing Systems, 2015, 21(4):963-970(in Chinese).
[22] LUO Y, WANG X D, WANG M X, et al. A force/stiffness compensation method for precision multi-peg-hole assembly[J]. International Journal of Advanced Manufacturing Technology, 2013, 67(1-4):951-956.
[23] 郭崇颖, 刘检华, 唐承统, 等. 基于装配精度预分析的红外线CCD实时装调技术研究[J]. 机械工程学报, 2014, 50(10):15-24. GUO C Y, LIU J H, TANG C T, et al. Real-time alignment of infrared CCD based on the assembly precision[J]. Journal of Mechanical Engineering, 2014, 50(10):15-24(in Chinese).
[24] 杨宝旒, 俞慈君, 金涨军, 等. 激光跟踪仪转站热变形误差建模与补偿方法[J]. 航空学报, 2015, 36(9):3155-3164. YANG B L, YU C J, JIN Z J, et al. Thermal deformation error modeling and compensation approach for laser tracker orientation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3155-3164(in Chinese).
文章导航

/