固体力学与飞行器总体设计

新型可调动力吸振器设计及参数优化

  • 李强 ,
  • 董光旭 ,
  • 张希农 ,
  • 罗亚军 ,
  • 张亚红 ,
  • 谢石林
展开
  • 西安交通大学 航天航空学院, 机械结构强度与振动国家重点实验室, 西安 710049

收稿日期: 2017-09-06

  修回日期: 2018-03-20

  网络出版日期: 2018-03-19

Design and parameter optimization of a new tunable dynamic vibration absorber

  • LI Qiang ,
  • DONG Guangxu ,
  • ZHANG Xinong ,
  • LUO Yajun ,
  • ZHANG Yahong ,
  • XIE Shilin
Expand
  • State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2017-09-06

  Revised date: 2018-03-20

  Online published: 2018-03-19

摘要

为有效抑制航天设备中由干扰源诱发的低频/超低频振动,提出了一种新型可调动力吸振器(NDVA)。该动力吸振器主要由柔性螺旋弹簧(SFS)及磁性负刚度弹簧(MNSS)组成。将所设计动力吸振器应用于振动控制时,采用平均法推导出系统在简谐激励下的稳态频响方程组及稳定性判据。基于稳定性分析,提出一种优化方法,通过简单迭代获得吸振器最优参数。最后,对提出吸振器的鲁棒稳定性进行分析。结果表明,除可实现低频振动有效抑制外,提出吸振器优越的鲁棒稳定性使得其在实际应用中能取得比线性吸振器更佳的振动控制效果。

本文引用格式

李强 , 董光旭 , 张希农 , 罗亚军 , 张亚红 , 谢石林 . 新型可调动力吸振器设计及参数优化[J]. 航空学报, 2018 , 39(6) : 221721 -221721 . DOI: 10.7527/S1000-6893.2018.21721

Abstract

To effectively suppress the low-frequency or ultra-low-frequency vibration induced by the disturbances in aerospace equipment, a New tunable Dynamic Vibration Absorber (NDVA) with tuning stiffness is proposed in this paper. The implementation of the NDVA is mainly carried out by connecting a Spiral Flexure Spring (SFS) and a Magnetic Negative Stiffness Spring (MNSS). As the proposed NDVA is applied to suppression of resonance, the steady-state frequency response equations and the stability criterion under harmonic force are derived with the averaging method. Based on stability analysis, a new optimization method is offered to attain the optimal parameters with simple iteration. Robustness of the NDVA is analyzed. The results show that besides attenuating vibration in a large low-frequency range, the proposed NDVA can achieve better vibration reduction effect than the linear absorber due to its advantage of robustness in practical application.

参考文献

[1] BOUCHER R. Identification and mitigation of low-frequency vibration sources on space station[C]//Dynamics Specialists Conference, 1996:1205.
[2] GARDONIO P. Review of active techniques for aerospace vibro-acoustic control[J]. Journal of Aircraft, 2002, 39(2):206-214.
[3] KAMESH D, PANDIYAN R, GHOSAL A. Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft[J]. Journal of Sound and Vibration, 2010, 329(17):3431-3450.
[4] HUNT J B. Dynamic vibration absorbers[M]. London:Mechanical Engineering Publications, 1979:10-18.
[5] KORENEV B G, REZNIKOV L M. Dynamic vibration absorbers:Theory and technical applications[M]. New York:John Wiley & Sons, 1993:205-271.
[6] INMAN D J. Engineering vibration[M]. 2nd ed. Upper Saddle River, NJ:Prentice-Hall, 2001:284-291.
[7] LIU K, LIU J. The damped dynamic vibration absorbers:Revistited and new result[J]. Journal of Sound and Vibration, 2005, 284(3):1181-1189.
[8] DU Y, BURDISSO R A, NIKOLAIDIS E. Control of internal resonances in vibration isolators using passive and hybrid dynamic vibration absorbers[J]. Journal of Sound and Vibration, 2005, 286(4):697-727.
[9] ROBERSON R E. Synthesis of a nonlinear dynamic vibration absorber[J]. Journal of the Franklin Institute, 1952, 254(3):205-220.
[10] HUNT J B, NISSEN J C. The broadband dynamic vibration absorber[J]. Journal of Sound and Vibration, 1982, 83(4):573-578.
[11] RICE H J, MCCRAITH J R. Practical non-linear vibra-tion absorber design[J]. Journal of Sound and Vibra-tion, 1987, 116(3):545-559.
[12] BORGES R A, STEFFEN V,JR. Optimization of a non-linear dynamic vibration absorber[C]//Proceedings of 19th International Congress of Mechanical Engineering (COBEM), 2007.
[13] HSU Y. The performance of a nonlinear dynamic vibration absorber[D]. Southampton:University of Southampton, 2013:48-89.
[14] VAKAKIS A F, M'CLOSKEY R. Energy pumping in nonlinear mechanical oscillators:Part Ⅰ-Dynamics of the underlying hamiltonian systems[J]. Urbana, 2001, 51:61801.
[15] VAKAKIS A F, MANEVITCH L I, GENDELMAN O, et al. Dynamics of linear discrete systems connected to local, essentially non-linear attachments[J]. Journal of Sound and Vibration, 2003, 264(3):559-577.
[16] MCFARLAND D M, KERSCHEN G, KOWTKO J J, et al. Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators[J]. The Journal of the Acoustical Society of America, 2005, 118(2):791-799.
[17] LAMARQUE C H, GENDELMAN O V, SAVADKOOHI A T, et al. Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[J]. Acta Mechanica, 2011, 221(1-2):175.
[18] GOURC E, MICHON G, SEGUY S, et al. Experimental investigation and design optimization of targeted energy transfer under periodic forcing[J]. Journal of Vibration and Acoustics, 2014, 136(2):021021.
[19] GENDELMAN O V, STAROSVETSKY Y, FELDMAN M. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink Ⅰ:Description of response regimes[J]. Nonlinear Dynamics, 2008, 51(1-2):31-46.
[20] STAROSVETSKY Y, GENDELMAN O V. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. Ⅱ:Optimization of a nonlinear vibration absorber[J]. Nonlinear Dynamics, 2008, 51(1-2):31-47.
[21] HUBBARD S A, COPELAND T J, MCFARLAND D M, et al. Characterization of a strongly nonlinear vibration absorber for aerospace applications[M]//Topics in Nonlinear Dynamics, Volume 3. New York:Springer, 2012:199-207.
[22] NISSEN J C, POPP K, SCHMALHORST B. Optimization of a non-linear dynamic vibration absorber[J]. Journal of Sound and Vibration, 1985, 99(1):149-154.
[23] XU X, YANG M, JIA N, et al. The structure optimization of tracked ambulance nonlinear vibration reduction system[J]. Journal of Mechanical Science and Technology, 2017, 31(2):523-533.
[24] 刘海平, 杨建中, 罗文波, 等. 新型欧拉屈曲梁非线性动力吸振器的实现及抑振特性研究[J]. 振动与冲击, 2016, 35(11):155-160. LIU H P, YANG J Z, LUO W B, et al. Realization and vibration suppression ability of a new novel Euler buckled beam nonlinear vibration absorber[J]. Journal of Vibration and Shock, 2016, 35(11):155-160(in Chinese).
[25] KOJIMA H, YAMAKAWA I. Analysis of the magnetic dynamic vibration absorber with unsymmetrical nonlinear restoring force[J]. Journal of the Japan Society of Precision Engineering, 1981, 47:568-573.
[26] KOJIMA H, SAITO H. Forced vibrations of a beam with a non-linear dynamic vibration absorber[J]. Journal of Sound and Vibration, 1983, 88(4):559-568.
[27] NATSIAVAS S. Steady state oscillations and stability of non-linear dynamic vibration absorbers[J]. Journal of Sound and Vibration, 1992, 156(2):227-245.
[28] SHAW J, SHAW S W, HADDOW A G. On the response of the non-linear vibration absorber[J]. International Journal of Non-Linear Mechanics, 1989, 24(4):281-293.
[29] DJEMAL F, CHAARI F, DION J L, et al. Performance of a non-linear dynamic vibration absorbers[J]. Journal of Mechanics, 2015, 31(3):345-353.
[30] ALEXANDER N A, SCHILDER F. Exploring the performance of a nonlinear tuned mass damper[J]. Journal of Sound and Vibration, 2009, 319(1):445-462.
[31] KEYE S, KEIMER R, HOMANN S. A vibration absorber with variable eigenfrequency for turboprop aircraft[J]. Aerospace Science and Technology, 2009, 13(4-5):165-171.
[32] DENG H, GONG X, WANG L. Development of an adaptive tuned vibration absorber with magnetorheological elastomer[J]. Smart Materials and Structures, 2006, 15(5):N111.
[33] BONELLO P, BRENNAN M J, ELLIOTT S J, et al. Designs for an adaptive tuned vibration absorber with variable shape stiffness element[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. London:The Royal Society, 2005, 461(2064):3955-3976.
[34] FRANCHEK M A, RYAN M W, BERNHARD R J. Adaptive passive vibration control[J]. Journal of Sound and Vibration, 1996, 189(5):565-585.
[35] HUANG X, LIU X, HUA H. On the characteristics of an ultra-low frequency nonlinear isolator using sliding beam as negative stiffness[J]. Journal of Mechanical Science and Technology, 2014, 28(3):813-822.
[36] SHEN Y, PENG H, LI X, et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness[J]. Mechanical Systems and Signal Processing, 2017, 85:193-203.
[37] ACAR M A, YILMAZ C. Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism[J]. Journal of Sound and Vibration, 332(2):231-245.
[38] DONG G, ZHANG X, XIE S, et al. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring[J]. Mechanical Systems and Signal Processing, 2017, 86:188-203.
[39] VIGUIÉ R, KERSCHEN G. The nonlinear tuned vibration absorber[M]//Topics in Nonlinear Dynamics, Volume 1. New York:Springer, 2013:229-237.
[40] ASAMI T, NISHIHARA O. Closed-form exact solution to H optimization of dynamic vibration absorbers (application to different transfer functions and damping systems)[J]. Journal of Vibration and Acoustics, 2003, 125(3):398-405.
[41] TANG B, BRENNAN M J, GATTI G, et al. Experimental characterization of a nonlinear vibration absorber using free vibration[J]. Journal of Sound and Vibration, 2016, 367:159-169.
文章导航

/