流体力学与飞行力学

主动侧杆引导下的Ⅱ型驾驶员诱发振荡抑制

  • 许舒婷 ,
  • 许舒婷 ,
  • 谭文倩 ,
  • 谭文倩 ,
  • 孙立国 ,
  • 孙立国 ,
  • 屈香菊 ,
  • 屈香菊
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083

收稿日期: 2017-11-13

  修回日期: 2018-07-20

  网络出版日期: 2018-03-13

基金资助

国家自然科学基金(11502008);航空科学基金(2017ZA51002)

Using active side-stick to prevent category Ⅱ pilot-induced oscillations

  • XU Shuting ,
  • XU Shuting ,
  • TAN Wenqian ,
  • TAN Wenqian ,
  • SUN Liguo ,
  • SUN Liguo ,
  • QU Xiangju ,
  • QU Xiangju
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2017-11-13

  Revised date: 2018-07-20

  Online published: 2018-03-13

Supported by

National Natural Science Foundation of China (11502008);Aeronautical Science Foundation of China (2017ZA51002)

摘要

现代飞机采用放宽静稳定性构型和侧杆控制器操纵,使得舵面速率饱和引起的驾驶员诱发振荡(PIO)成为影响飞行品质的一个重要因素。针对舵面速率饱和引起的Ⅱ型PIO问题,设计了主动侧杆人感系统,其弹性系数随着舵面偏转速率饱和的发生而改变,从而达到抑制速率饱和的作用。基于主动侧杆引导下的人机闭环系统模型,仿真分析和飞行品质评价验证表明,基于系统误差在线调整人感系统弹性系数,能够降低舵机速率饱和的程度,改善飞行品质,有效抑制舵机速率饱和引起的Ⅱ型PIO。

本文引用格式

许舒婷 , 许舒婷 , 谭文倩 , 谭文倩 , 孙立国 , 孙立国 , 屈香菊 , 屈香菊 . 主动侧杆引导下的Ⅱ型驾驶员诱发振荡抑制[J]. 航空学报, 2018 , 39(8) : 121861 -121861 . DOI: 10.7527/S1000-6893.2018.21861

Abstract

Modern fly-by-wire airframes are often designed to have relaxed static stability and side-stick control, making Pilot-Induced Oscillation (PIO) caused by actuator rate saturation as an important factor affecting flight qualities. In this paper, an active side-stick is designed as a means to alleviate pilot-induced oscillations due to actuator rate saturation. The stiffness of the active side-stick is changed with the actuator rate saturation, so as to mitigate the rate saturation. Based on the pilot-aircraft closed-loop system model with active side-stick, the simulation analysis and evaluation results show that the active side-stick to change the stiffness of the feel system can reduce the degree of saturation, improve flying qualities, and prevent category Ⅱ PIO due to actuator rate saturation effectively.

参考文献

[1] MITCHELL D G, HOH R H. Development of methods and devices to predict and prevent pilot-induced oscillations:AFRL-VA-WP-TR-2000-3046[R]. Wright-Patterson AFB, OH:U.S. Air Force Research Laboratory, 2000.
[2] MITCHELL D G, KLYDE D H. Identifying a pilot-induced oscillation signature:New techniques applied to old problems[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1):215-224.
[3] BRINDLEY J, COUNSELL J M, ZAHER O S, et al. Design and simulation of a non-linear, discontinuous, flight control system using rate actuated inverse dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(4):632-646.
[4] MASARATI P, QUARANTA G, JUMP M. Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraft-pilot coupling analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(1):125-141.
[5] HESS R A, SNELL S A. Flight control system design with rate saturating actuators[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(1):90-96.
[6] LIEBST B S, CHAPA M J, LEGGETT D B. Nonlinear prefilter to prevent pilot-induced oscillations due to actuator rate limiting[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4):740-747.
[7] JAMES G. A comparison of nonlinear algorithms to prevent pilot-induced oscillations caused by actuator rate limiting[R]. Wright-Patterson AFB, OH:Air Force Institute of Technology, 2003.
[8] CHAPA M J. A nonlinear pre-filter to prevent departure and/or pilot-induced oscillations (PIO) due to actuator rate limiting[R]. Wright-Patterson AFB, OH:Air Force Institute of Technology, 1999.
[9] TURNER M C, POSTLETHWAITE I. A new perspective on static and low order anti-windup synthesis[J]. International Journal of Control, 2004, 77(1):27-44.
[10] EDWARDS C, POSTLETHWAITE I. Anti-windup and bumpless transfer schemes[J]. Automatica, 1998, 34(2):199-210.
[11] GATLEY S L, TURNER M C, POSTLETHWAITE I, et al. A comparison of rate-limit compensation schemes for pilot-induced-oscillation avoidance[J]. Aerospace Science and Technology, 2006, 10(1):37-47.
[12] ACOSTA D M, YILDIZ Y, CRAUN R W, et al. Piloted evaluation of a control allocation technique to recover from pilot-induced oscillations[J]. Journal of Aircraft, 2014, 52(1):130-140.
[13] YILDIZ Y, KOLMANOVSKY I V. A control allocation technique to recover from pilot-induced oscillations (CAPIO) due to actuator rate limiting[C]//American Control Conference (ACC), 2010. Piscataway, NJ:IEEE Press, 2010:516-523.
[14] YILDIZ Y, KOLMANOVSKY I V, ACOSTA D. A control allocation system for automatic detection and compensation of phase shift due to actuator rate limiting[C]//American Control Conference (ACC), 2011. Piscataway, NJ:IEEE Press, 2011:444-449.
[15] YILDIZ Y, KOLMANOVSKY I V. Stability properties and cross-coupling performance of the control allocation scheme CAPIO[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4):1190-1196.
[16] KLYDE D H, MCRUER D. Smart-cue and smart-gain concepts development to alleviate loss of control[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1409-1417.
[17] KLYDE D H, LIANG C Y. Approach and landing flight evaluation of smart-cue and smart-gain concepts[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1057-1070.
[18] LAMPTON A K, KLYDE D H, LEE D C, et al. Development of the SAFE-Cue system component mechanization for loss of control mitigation[C]//AIAA Science and Technology Forum and Exposition. Reston, VA:AIAA, 2014:13-17.
[19] KLYDE D H, LIANG C Y, RICHARDS N, et al. Use of active inceptor cueing to mitigate pilot-vehicle system loss of control[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2012.
[20] KLYDE D H, LAMPTON A K, ALVAREZ D J, et al. Flight test evaluation of the SAFE-Cue system for loss of control mitigation[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2014.
[21] XU S, TAN W, SUN L, et al. Survey on theory and method of pilot-aircraft system with intelligent control[C]//20173rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). Piscataway, NJ:IEEE Press, 2017:92-96.
[22] XU S, TAN W, EFREMOV A V, et al. Review of control models for human pilot behavior[J]. Annual Reviews in Control, 2017, 44:274-291.
[23] HESS R A. Unified theory for aircraft handling qualities and adverse aircraft-pilot coupling[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(6):1141-1148.
[24] ZEYADA Y, HESS R A, SIWAKOSIT W. Aircraft handling qualities and pilot-induced oscillation tendencies with actuator saturation[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):852-861.
[25] HESS R A, STOUT P W. Assessing aircraft susceptibility to nonlinear aircraft-pilot coupling/pilot-induced oscillations[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):957-964.
[26] KLYDE D H, MCRUER D. Development of Smart-Cue and Smart-Gain concepts to alleviate loss of control[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2008.
[27] VAN PAASSEN M M, VAN DER VAART J C, MULDER J A. Model of the neuromuscular dynamics of the human pilot's arm[J]. Journal of Aircraft, 2004, 41(6):1482-1490.
[28] VAN PAASSEN M M. Biophysics in aircraft control:A model of the neuromuscular system of the pilot's arm[D]. Delft:Delft University of Technology, 1994.
[29] KLYDE D H, LIANG C Y. Flight Assessment of pilot behavior with smart-cue and smart-gain concepts active[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2009.
[30] Department of Defense. Flying qualities of piloted aircraft:MIL-HDBK-1797A[S]. Washington,D.C.:Department of Defense, 1997.
[31] LIU F, WANG L, TAN X. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM[J]. Chinese Journal of Aeronautics, 2015, 28(1):112-120.
[32] GUO L, ZHU M, NIE B, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2):602-610.
[33] STEVENS B L, LEWIS F L. Aircraft control and simulation[M]. New York:Wiley, 1992.
文章导航

/