材料工程与机械制造

低Cu含量Al-Mg-Si-Cu合金的T78双级时效

  • 王芝秀 ,
  • 朱凡 ,
  • 郑凯 ,
  • 李海
展开
  • 1. 常州大学 材料科学与工程学院, 常州 213164;
    2. 江苏省材料表面科学与技术重点实验室, 常州 213164

收稿日期: 2018-01-02

  修回日期: 2018-03-07

  网络出版日期: 2018-03-07

基金资助

国家自然科学基金(51671038,51571038);江苏省自然科学基金(BK20151188,BK20171195)

Two step ageing (T78 temper) of an Al-Mg-Si-Cu alloy with small Cu addition

  • WANG Zhixiu ,
  • ZHU Fan ,
  • ZHENG Kai ,
  • LI Hai
Expand
  • 1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China;
    2. Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou 213164, China

Received date: 2018-01-02

  Revised date: 2018-03-07

  Online published: 2018-03-07

Supported by

National Natural Science Foundation of China (51671038, 51571038);Natural Science Foundation of Jiangsu Province (BK20151188, BK20171195)

摘要

采用拉伸和加速腐蚀试验,分别测试了预时效(180℃)+再时效(190、200、210℃)对一种低Cu含量Al-Mg-Si-Cu合金拉伸性能和晶间腐蚀的影响,结果表明,延长预时效和再时效时间或提高再时效温度,合金强度逐渐降低,同时,腐蚀类型按晶间腐蚀→均匀腐蚀→坑蚀顺序演化。其中,经预时效(180℃/2~8 h)+再时效(200℃/6 h或210℃/2 h)处理,合金抗拉强度、屈服强度和延伸率分别为380~395 MPa、360~380 MPa和12%~15%,腐蚀类型为均匀腐蚀,实现强度与耐蚀性的良好配合。透射电镜观察表明,随着双级时效程度的增加,合金强度的降低源于基体β"相的减少及β'相和Q'相的增加;晶间腐蚀倾向的降低与晶界Q相大间距、断续分布有关;坑蚀的形成则与结晶Q相吸收周围析出相、形成基体无析出区有关。

本文引用格式

王芝秀 , 朱凡 , 郑凯 , 李海 . 低Cu含量Al-Mg-Si-Cu合金的T78双级时效[J]. 航空学报, 2018 , 39(8) : 421986 -421986 . DOI: 10.7527/S1000-6893.2018.21986

Abstract

The tensile properties and intergranular corrosion of an Al-Mg-Si-Cu alloy with small Cu addition during a two-step ageing (T78 temper) consisting of low-temperature pre-ageing at 180℃ and high-temperature re-ageing at 190, 200 and 210℃ Were investigated by the tensile and accelerated corrosion tests. The results show that with the increase of the pre-ageing and re-ageing time or re-ageing temperature, the strength of the alloy decreases gradually, and the corrosion mode changes in the sequence of intergranular corrosion, uniform corrosion and pitting corrosion. After pre-ageing at 180℃ for 2-8 h and re-ageing at 200℃ for 6 h or 210℃ for 2 h, the alloy has the ultimate tensile strength, yield strength and elongation to failure of 380-395 MPa, 360-380 MPa and 12%-15% respectively, accompanied by uniform corrosion. The transmission electron microscopy observations show that during two-step ageing, the decrease in strength of the alloy is attributed to the decrease of β" precipitates and the increase of β' and Q' precipitates, the decreased intergranular corrosion results from the enlarged interspacing between the grain boundary Q precipitates, andthe increased pitting corrosion is due to the precipitate free zones around the constituent Q phase as a result of coarsening.

参考文献

[1] MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science Engineering A, 2000, 280(1):37-49.
[2] HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science Engineering A, 2000, 280(1):102-107.
[3] 贺春林, 孟小丹, 马国峰, 等. 6000系铝合金晶间腐蚀研究进展[J]. 沈阳大学学报(自然科学版), 2014, 26(1):18-23. HE C L, MENG X D, MA G F, et al. Research development in intergranular corrosion of 6000(series aluminum alloys[J]. Journal of Shenyang University (Natural Science), 2014, 26(1):18-23(in Chinese).
[4] 王芝秀, 李海, 顾建华, 等. Cu含量对Al-Mg-Si-Cu合金微观组织和性能的影响[J]. 中国有色金属学报, 2012, 22(12):3348-3355. WANG Z X, LI H, GU J H, et al. Effect of Cu content on microstructures and properties of Al-Mg-Si-Cu alloys[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(12):3348-3355(in Chinese).
[5] ZOU Y, LIU Q, JIA Z H, et al. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content[J]. Applied Surface Science, 2017, 405:489-496.
[6] KAIRY S K, ROMETSCH P A, DIAO K, et al. Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure[J]. Electrochimica Acta, 2016, 190:92-103.
[7] LIANG W J, ROMETSCH P A, CAO L F, et al. General aspects related to the corrosion of 6xxx series aluminium alloys:Exploring the influence of Mg/Si ratio and Cu[J]. Corrosion Science, 2013, 76(10):119-128.
[8] KAIRY S K, ALAM T, ROMETSCH P A, et al. Understanding the origins of intergranular corrosion in copper containing Al-Mg-Si alloys[J]. Metallurgical Materials Transaction A, 2016, 47(3):985-989.
[9] DIF R, BES B, EHRSTRO M, et al. Understanding and modeling the mechanical and corrosion properties of 6056 for aerospace applications[J]. Materials Science Forum, 2000, 331-337:1613-1618.
[10] 潘道召, 王芝秀, 李海, 等. 双级时效对6061铝合金拉伸性能和晶间腐蚀性能的影响[J]. 中国有色金属学报, 2010, 20(3):435-441. PAN D Z, WANG Z X, LI H, et al. Effects of two(step ageing treatment on tensile properties and intergranular corrosion of 6061 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3):435-441(in Chinese).
[11] 张海锋, 郑子樵, 钟申, 等. 双级时效制度对6156铝合金组织和性能的影响[J]. 中国有色金属学报, 2012, 22(4):1025-1032. ZHANG H F, ZHENG Z Q, ZHONG S, et al. Effects of two-step aging treatment on microstructure and properties of 6156 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(4):1025-1032(in Chinese).
[12] 林莉, 郑子樵, 李劲风. 时效制度对6156铝合金力学性能及腐蚀性能的影响[J]. 稀有金属材料与工程, 2012, 41(6):1004-1009. LIN L, ZHENG Z Q, LI J F. Effect of aging treatments on the mechanical properties and corrosion behavior of 6156 aluminum alloy[J]. Rare Metal Materials and Engineering, 2012, 41(6):1004-1009(in Chinese).
[13] 李海, 毛庆忠, 王芝秀, 等. 高温预时效+低温再时效对Al-Mg-Si-Cu合金力学性能及晶间腐蚀敏感性的影响[J]. 金属学报, 2014(11):1357-1366. LI H, MAO Q Z, WANG Z X, et al. Effect of high temperature pre-ageing and low-temperature re-ageing on mechanical properties and intergranular corrosion susceptibility of Al-Mg-Si-Cu alloys[J]. Acta Metallurgica Sinica, 2014(11):1357-1366(in Chinese).
[14] 王胜强, 陆政, 戴圣龙, 等. 6A60铝合金板材三级时效工艺研究[J]. 航空材料学报, 2003, 23(s1):78-82. WANG S Q, LU Z, DAI S L, et al. Study on the three-step aging of 6A60 aluminium alloy sheet[J]. Journal of Aeronautical Materials, 2003, 23(s1):78-82(in Chinese).
[15] ASSERIN-LEBERT A, BESSON J, GOURGUES A F. Fracture of 6056 aluminum sheet materials:Effect of specimen thickness and hardening behavior on strain localization and toughness[J]. Materials Science and Engineering A, 2005,395(1-2):186-194.
[16] KAIRY S K, ALAM T, ROMETSCH P A, et al. Understanding the origins of intergranular corrosion in copper containing Al-Mg-Si alloys[J]. Metallurgical Materials Transaction A, 2016, 47(3):985-989.
[17] KAIRY S K, ROMETSCH P A, DAVIES C H J, et al. On the intergranular corrosion and hardness evolution of 6xxx series Al alloys as a function of Si:Mg ratio, Cu content and ageing condition[J]. Corrosion, 2017, 73(10):1280-1295.
[18] 陈江华, 刘春辉. AlMgSi(Cu)合金中纳米析出相的结构演变[J]. 中国有色金属学报, 2011, 21(10):2352-2360. CHEN J H, LIU C H. Microstructure evolution of precipitates in AlMgSi(Cu) alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2352-2360(in Chinese).
[19] 李祥亮, 陈江华, 刘春辉, 等. T6和T78时效工艺对Al-Mg-Si-Cu合金显微结构和性能的影响[J]. 金属学报, 2013, 49(2):243-250. LI X L, CHEN J H, LIU C H, et al. Effects of T6 and T78 tempers on the microstructures and properties of Al-Mg-Si-Cu alloys[J]. Acta Metallurgica Sinica, 2013, 49(2):243-250(in Chinese).
[20] 廖元飞, 陈江华, 刘春辉, 等. Al-Mg-Si-Cu合金中晶界和晶内析出相粗化规律的研究[J]. 电子显微学报, 2012, 31(2):116-123. LIAO Y F, CHEN J H, LIU C H, et al. An electron microscopy study of precipitate coarsening in Al-Mg-Si-Cu alloys[J]. Journal of Chinese Electron Microscopy Society, 2012, 31(2):116-123(in Chinese).
[21] BISWAS A, SIEGEL D J, SEIDMAN D N. Compositional evolution of Q-phase precipitates in an aluminum alloy[J]. Acta Materials, 2014, 75(9):322-336.
[22] BUHA J, LUMLEY R N, CROSKY A G, et al. Secondary precipitation in an Al-Mg-Si-Cu alloy[J]. Acta Materialia, 2007, 55(9):3015-3024.
[23] CHAKRABARTI D J, LAUGHLIN D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions[J]. Progress in Materials Science, 2004, 49(3-4):389-410.
[24] 李海, 孟林, 王芝秀, 等. 残留结晶相对Al-Mg-Si-Cu合金晶间腐蚀行为的影响[J]. 中国有色金属学报, 2012, 22(12):3300-3306. LI H, MENG L, WANG Z X, et al. Effect of residual constituents on intergranular corrosion behavior of Al-Mg-Si-Cu alloy[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(12):3300-3306(in Chinese).
[25] 徐丽新, 胡津, 耿林, 等. 铝的点蚀行为[J]. 宇航材料工艺, 2002, 32(2):21-24. XU L X, HU J, GENG L, et al. Pitting behavior of aluminum[J]. Aerospace Materials & Technology, 2002, 32(2):21-24(in Chinese).
文章导航

/