固体力学与飞行器总体设计

多孔多裂纹平板的疲劳裂纹扩展试验与分析方法

  • 李政鸿 ,
  • 徐武 ,
  • 张晓晶 ,
  • 余音
展开
  • 上海交通大学 航空航天学院, 上海 200240

收稿日期: 2017-11-15

  修回日期: 2018-05-03

  网络出版日期: 2018-03-01

基金资助

上海市青年科技英才扬帆计划(17YF1409400)

Experimental and analytical analyses of fatigue crack growth in sheets with multiple holes and cracks

  • LI Zhenghong ,
  • XU Wu ,
  • ZHANG Xiaojing ,
  • YU Yin
Expand
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2017-11-15

  Revised date: 2018-05-03

  Online published: 2018-03-01

Supported by

Shanghai Sailing Program (17YF1409400)

摘要

飞机结构广布疲劳损伤是目前大型客机损伤容限设计与分析的难点。通过试验研究了典型多孔多裂纹2024-T3铝合金平板的裂纹扩展行为。试验结果表明:相邻孔边裂纹之间的相互干扰明显降低了共线多裂纹平板的疲劳裂纹扩展寿命。就本文研究的典型多孔板,所有孔边都出现了等长裂纹这一极端情况,其裂纹扩展寿命是单孔平板孔边裂纹扩展寿命的10%左右。本文采用Eshelby夹杂理论和权函数法给出了典型多孔多裂纹问题的应力强度因子近似解析解,并结合Paris裂纹扩展公式预测疲劳裂纹扩展寿命。与采用有限元法获得应力强度因子并预测多孔多裂纹板的疲劳裂纹扩展寿命进行对比,对比结果表明:采用解析解和有限元解获得的应力强度因子预测的疲劳裂纹扩展寿命与试验结果吻合良好;相比于有限元法,本文的应力强度因子解法简单、高效,将有助于飞机结构多位置损伤(MSD)的疲劳裂纹扩展寿命预测分析。

本文引用格式

李政鸿 , 徐武 , 张晓晶 , 余音 . 多孔多裂纹平板的疲劳裂纹扩展试验与分析方法[J]. 航空学报, 2018 , 39(7) : 221867 -221867 . DOI: 10.7527/S1000-6893.2018.21867

Abstract

Widespread fatigue damage poses a serious challenge to the design of modern civil aircraft. Tests are conducted to study the fatigue crack growth of 2024-T3 aluminum sheets with multiple collinear holes and cracks. It is observed that due to the interaction between adjacent hole-edge cracks, the fatigue crack growth life of the sheets with multiple collinear cracks is significantly reduced. For the extreme case in this paper, where equal-length cracks emanate from all the holes, the corresponding fatigue crack growth life is about 10% of that of two equal length cracks emanating from a single hole in a finite sheet. The Eshelby's inclusion theory and the weight function method are used to obtain the stress intensity factor of the sheet with multiple collinear holes and cracks. The approximately analytical stress intensity factors are combined with Paris's law for predicting the fatigue crack growth life. For comparison purpose, the finite element method is also used to obtain the stress intensity factor for predicting the fatigue crack growth life. Both the fatigue crack growth lives predicted by using the analytical method and finite element method agree well with the test results. Compared with the finite element method for fatigue crack growth prediction, the method proposed is simpler and more efficient, thus providing a useful tool for fatigue crack growth life prediction of the structure with Multiple Site Damages (MSD).

参考文献

[1] FAA. Aging airplane program:Widespread fatigue damage:FAA-2006-24281[S]. Washington, D.C.:FAA, 2010.
[2] 李亚智, 李强, 沈培良. 运输类飞机防止广布疲劳损伤的适航要求[J]. 航空工程进展, 2011, 2(4):373-382. LI Y Z, LI Q, SHEN P L. An overview of airworthiness requirements for transport category airplanes to prevent widespread fatiguedamage[J]. Advances in Aeronautical Science and Engineering, 2011, 2(4):373-382(in Chinese).
[3] 王生楠, 郑晓玲. 运输类飞机防止广布疲劳损伤的新规章解读[J]. 航空学报, 2010, 31(9):1758-1768. WANG S N, ZHENG X L. Study on proposed rules to preclude widespread fatigue damage for transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1758-1768(in Chinese).
[4] PITT S, JONES R. Multiple-site and widespread fatigue damage in aging aircraft[J]. Engineering Failure Analysis, 1997, 4(4):237-257.
[5] National Transportation Safety Board. Report AAB-13-02[EB/OL]. Washington, D.C.:National Transportation Safety Board.[2017-11-10]. www. ntsb. gov.
[6] 张健萍, 时新红, 张建宇, 等. 确定飞机结构WFD平均行为的寿命升降法[J]. 北京航空航天大学学报, 2016, 42(1):147-151. ZHANG J P, SHI X H, ZHANG J Y, et al. Life up and down method for determining WFD average behavior of aircraftstructures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1):147-151(in Chinese).
[7] 徐武. 飞机结构多位置损伤分析的权函数法与剩余强度预测[D]. 上海:上海交通大学, 2012:21-30. XU W. Weight function method for aircraft structure multiple site damage analyses and residual strengthprediction[D]. Shanghai:Shanghai Jiao Tong University, 2012:21-30(in Chinese).
[8] DAWICKE D S, NEWMAN J C. Analysis and prediction of multiple-site damage (MSD) fatigue crack growth:NASA-TP-3231[R]. Washington, D.C.:NASA, 1992.
[9] BOWIE O L. Analysis of an infinite plate containing radial cracks at the boundary of an internal circular hole[J]. Studies in Applied Mathematics, 1956, 35(1-4):60-71.
[10] NEWMAN J C. An improved method of collocation for the stress analysis of cracked plates with various shaped boundaries:NASA TN D-6376[R]. Washington, D.C.:NASA, 1971.
[11] FU D S, ZHANG X. Analytical-variational method of solution for stress intensity factors about anisotropic and isotropic finite plates with double cracks emanating from holes[J]. Engineering Fracture Mechanics, 1995, 50(50):311-324.
[12] ZHAO J, XIE L, LIU J, et al. A method for stressintensity factor calculation of infinite plate containing multiple hole-edge cracks[J]. International Journal of Fatigue, 2012, 35(1):2-9.
[13] 郭树祥, 许希武. 任意多孔多裂纹有限大板的应力强度因子分析[J]. 固体力学学报, 2005, 26(3):351-358. GUO S X, XU X W. A study on the stress intensity factors of a finite plate with multiple elliptical holes andcracks[J]. Acta Mechanica Solida Sinica, 2005, 26(3):351-358(in Chinese).
[14] MILLWATER H R. A simple and accurate method for computing stress intensity factors of collinear interacting cracks[J]. Aerospace Science & Technology, 2010, 14(8):542-550.
[15] CHEN Y Z, WANG Z X. Solution of multiple crack problem in a finite plate using coupled integral equations[J]. International Journal of Solids & Structures, 2012, 49(1):87-94.
[16] XU W, WANG H, WU X R, et al. A novel method for residual strength prediction for sheets with multiple site damage:Methodology and experimentalvalidation[J]. International Journal of Solids & Structures, 2014, 51(3-4):551-565.
[17] XU W, WU X R. Weight functions and strip-yield model analysis for three collinearcracks[J]. Engineering Fracture Mechanics, 2012, 85:73-87.
[18] XU W, WU X R, YU Y. Weight function, stress intensity factor and crack opening displacement solutions to periodic collinear edge holecracks[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40:2068-2079.
[19] GALATOLO R, LAZZERI R. Experiments and model predictions for fatigue crack propagation in riveted lap-joints with multiple site damage[J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(3):307-319.
[20] 王芳丽, 朱书华, 李宴宾, 等. 铝合金板广布损伤裂纹扩展顺序的数值分析[J]. 航空计算技术, 2014(2):66-69. WANG F L, ZHU S H, LI Y B, et al. Numerical analysis on crack propagation order of widespread damage in aluminum alloypanel[J]. Aeronautical Computing Technique, 2014(2):66-69(in Chinese).
[21] American Society for Testing and Materials. Standard test method for measurement of fatigue crack growth rates:ASTM E 647-08[S].West Conshohocken, PA:ASTM International, 2008.
[22] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1993:352-353. Chinese Aeronautical Establishment. Stress intensity factors handbook[M]. Beijing:Science Press, 1993:352-353(in Chinese).
[23] 吴学仁. 飞机结构金属材料力学性能手册[M]. 北京:航空工业出版社, 1996:156-157. WU X R. Handbook of mechanical properties of metallic materials for aircraftstructures[M]. Beijing:Aviation Industry Press, 1996:156-157(in Chinese).
[24] LI H, YANG J, LI Z, et al. An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape[J]. Engineering Fracture Mechanics, 2014, 116(1):190-196.
[25] SHIVAKUMAR V, FORMAN R G. Green's function for a crack emanating from a circular hole in an infinite sheet[J]. International Journal of Fracture, 1980, 16(4):305-316.
[26] WILLIAMS T N, NEWMAN J C, GULLETT P M. Crack-surface displacements for cracks emanating from a circular hole under various loading conditions[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 34(4):250-259.
[27] ISIDA M. Stress intensity factors for the tension of an eccentrically cracked strip[J]. Journal of Applied Mechanics, 1966, 33(3):674-675.
文章导航

/