Maneuvering target tracking loss often occurs with the traditional association gate design method, and the probabilistic data association algorithm is not fit for multi-cross target tracking. To overcome these problems, a cognitive radar data association algorithm is proposed based on the human visual attention model and the perceptual object "feature integration" theory. The algorithm is based on the comprehensive interacting multiple model probabilistic data association algorithm, and uses the "current" statistical model, in which the maximum maneuvering level is known, and the uniform motion model as the model set. The association gate can be adjusted via target maneuvering, balancing the radar computing time and tracking success rate. Based on the features of target location, the motion features of the target are extracted and integrated to classify the public measure in the cross area of the association gate. The multi-cross target tracking problem is then transferred into the problem of tracking of multiple single targets, so the traditional probabilistic data association algorithm is optimized. Simulation results show that the proposed algorithm can significantly reduce the tracking failure rate and computing time, and the optimized data association algorithm with slightly more time consumption is more environment adaptable than the traditional algorithm.
[1] 靳标, 纠博, 苏涛, 等. 一种用于杂波中机动目标跟踪的自适应关联波门设计方法[J]. 西安交通大学学报, 2014, 48(10):35-41. JIN B, JIU B, SU T, et al. A method to design adaptive correlating gate for maneuvering target tracking in clutter[J]. Journal of Xi'an Jiaotong University, 2014, 48(10):35-41(in Chinese).
[2] LI X R, JILKOV V P. Survey of maneuvering target tracking-Part Ⅰ:Dynamic models[J]. IEEE Transactions on Aerospace and Electronic System, 2003, 39(4):1333-1364.
[3] LI X R, JILKOV V P. Survey of maneuvering target tracking-Part Ⅴ:Multiple-model method[J]. IEEE Transactions on Aerospace and Electronic System, 2005, 41(4):1255-1321.
[4] 刘俊, 刘瑜, 何友, 等. 杂波环境下基于全邻模糊聚类的联合概率数据互联算法[J]. 电子与信息学报, 2016, 38(6):1438-1445. LIU J, LIU Y, HE Y, et al. Joint probability data association algorithm based on all-neighbor fuzzy clustering in clutter[J]. Journal of Electronic & Information Technology, 2016, 38(6):1438-1445(in Chinese).
[5] 程婷, 何子述, 李亚星. 一种具有自适应关联门的杂波中机动目标跟踪算法[J]. 电子与信息学报, 2012, 34(4):865-870. CHENG T, HE Z S, LI Y X. A maneuvering target tracking algorithm with adaptive association gate in clutters[J]. Journal of Electronic & Information Technology, 2012, 34(4):865-870(in Chinese).
[6] 潘泉, 梁彦, 杨峰, 等. 现代目标跟踪与信息融合[M]. 北京:国防工业出版社, 2009:110-115 PAN Q, LIANG Y, YANG F, et al. Modern target tracking and information fusion[M]. Beijing:National Defence Industry Press, 2009:110-115(in Chinese).
[7] HAYKIN S. Cognitive radar:A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1):30-40.
[8] HAYKIN S, ZIA A, ARASARATNAM I, et al. Cognitive tracking radar[C]//IEEE Radar Conference. Piscataway, NJ:IEEE Press, 2010:1467-1470.
[9] 盛丹, 王国宏, 张翔宇. 基于波形捷变的多传感器机动目标跟踪[J]. 系统工程与电子技术, 2015, 37(3):485-491. SHENG D, WANG G H, ZHANG X Y. Maneuvering target tracking based on waveform agility with multi-sensor[J]. Systems Engineering and Electronics, 2015, 37(3):485-491(in Chinese).
[10] WANG J T, QIN Y L, WANG H Q. Dynamic wavform selection for maneuvering target tracking in clutter[J].IET Radar, Sonar & Navigation, 2013, 7(7):815-825.
[11] MITCHELL A E, SMITH G E, BELL K L, et al. Single target tracking with distributed cognitive radar[C]//IEEE Radar Conference. Piscataway, NJ:IEEE Press, 2017:0285-0288.
[12] 靳标, 纠博, 刘宏伟, 等. 一种针对目标跟踪的自适应波形选择方法[J]. 西安电子科技大学学报(自然科学版), 2014, 41(1):57-63. JIN B, JIU B, LIU H W, et al. Adaptive waveform selection approach for target tracking[J]. Journal of Xidian University (Natural Science), 2014, 41(1):57-63(in Chinese).
[13] WANG B, SUN J, ZHANG X, et al. A waveform-agile unscented Kalman filter for radar target tracking[C]//IEEE Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) Conference. Piscataway, NJ:IEEE Press, 2016:1153-1157.
[14] ROSSETTI G, DELIGIANNIS A, LAMBOTHARAN S. Waveform design and receiver filter optimization for multistatic cognitive radar[C]//IEEE Radar Conference. Piscataway, NJ:IEEE Press, 2016:1-5.
[15] FRINTROP S. Computational visual attention[J]. Computer Analysis of Human Behavior, 2011,192(1):69-101.
[16] ITTI L, KOCH C. Computational modeling of visual attention[J]. Nature Review Neuroscience, 2001, 2(3):194-203.
[17] 黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述[J]. 自动化学报, 2014, 40(4):561-576. LI W Y, WANG P, QIAO H. A survey of visual attention based methods for object tracking[J]. Acta Automatica Sinica, 2014, 40(4):561-576(in Chinese).
[18] ITTI L. Models of bottom-up and top-down attention[D]. Pasadena, CA:California Institute of Technology, 2000:179-183.
[19] TREISMAN A, GORMICAN S. Feature analysis in early vision:Evidence from search asymmetries[J]. Psychological Review, 1988, 95(1):15-48.
[20] GOLDSTEIN E B. 认知心理学[M]. 张明, 译. 北京:中国轻工业出版社, 2015:103-144. GOLDSTEIN E B. Cognitive psychology[M]. ZHANG M, translated. Beijing:China Light Industry Press, 2015:103-144(in Chinese).
[21] 许登荣, 程水英, 包守亮. 自适应转移概率交互式多模型跟踪算法[J]. 电子学报, 2016, 45(9):2113-2120. XU D R, CHENG S Y, BAO S L. Interacting multiple model algorithm based on adaptive transition probability[J]. Acta Electronic Sinica, 2016, 45(9):2113-2120(in Chinese).
[22] 何友, 修建娟, 张晶炜. 雷达数据处理及应用[M]. 2版. 北京:电子工业出版社, 2009:108-110. HE Y, XIU J J, ZHANG J W. Radar data processing with applications[M]. 2nd ed. Beijing:Electronic Industry Press, 2009:108-110(in Chinese).
[23] 周宏仁, 敬忠良, 王培德. 机动目标跟踪[M]. 北京:国防工业出版社, 1991:15-16, 134-142. ZHOU H R, JING Z L, WANG P D. Tracking of maneuvering targets[M]. Beijing:National Defence Industry Press, 1991:15-16, 134-142(in Chinese).