固体力学与飞行器总体设计

基于能量法的起落架落震试验评定准则

  • 杜金柱 ,
  • 孟凡星 ,
  • 卢学峰
展开
  • 沈阳飞机设计研究所 综合强度部, 沈阳 110035

收稿日期: 2017-05-02

  修回日期: 2018-01-19

  网络出版日期: 2018-01-19

Criteria for evaluation of landing gear drop test based on energy method

  • DU Jinzhu ,
  • MENG Fanxing ,
  • LU Xuefeng
Expand
  • Comprehensive Strength Department, Shenyang Aircraft Design & Research Institute, Shenyang 110035, China

Received date: 2017-05-02

  Revised date: 2018-01-19

  Online published: 2018-01-19

摘要

为通过理论分析建立一套用于起落架落震试验评定的基本准则,提出了一种使用起落架缓冲系统设计要求或其等效形式进行落震试验评定的方法,并从能量分析的角度给出了适用于陆基飞机起落架落震试验评定的统一设计要求。对于在落震试验中无法直接验证的耗能设计要求,通过能量等效的方法,研究了不同落震试验方法中的等效形式。对于仿升法落震试验,提出了利用反行程阻尼系数进行耗能评定,并建立了反行程阻尼系数与缓冲系统消耗能量之间的函数关系。在此基础之上,结合正反行程时间的限制条件,给出了耗能极值问题的计算方法。对于减缩质量法落震试验,建立了缓冲系统耗能系数和机轮不跳离地面之间的联系,研究了随过载增大实现机轮不跳离地面的可行性。最后,研究了两种落震试验方法的能力范围,并给出减缩质量法和仿升法等效的条件。

本文引用格式

杜金柱 , 孟凡星 , 卢学峰 . 基于能量法的起落架落震试验评定准则[J]. 航空学报, 2018 , 39(4) : 221375 -221375 . DOI: 10.7527/S1000-6893.2018.21375

Abstract

In order to establish a set of basic criterias for the evaluation of landing gear drop test by theoretical analysis, an approach using the requirements of the landing gear design or its equivalent forms is proposed to evaluate landing gear drop tests, and a set of all design requirements that fit the landing gear drop test of land-based aircrafts is given based on energy analysis. For the energy-dissipated design that cannot be verified directly, equivalent forms of energy dissipation requirements under different drop test conditions are developed by energy equivalent method. For the simulated air-borne impacts, the anti-stroke damping coefficient is defined to evaluate the capability of dissipating energy, and an equation for the relationship between the coefficient and the dissipated energy is established. Considering the limited time in the process of compression and rebound, the maximum value of the dissipated energy can be obtained with this equation. For the reduced-mass method, the relationship between energy dissipation and wheel motion is established, and the feasibility to avoid the jumpoff of the wheels is studied. The capabilities of the two methods for the drop test are compared, and the equivalent conditions of the two methods are given.

参考文献

[1] FLUGGE W. Landing-gear impact:NACA TN 2743[R]. Washington, D.C.:NASA, 1952.
[2] MILWITZKY B, COOK F E. Analysis of landing-gear behavior:NACA TN 2755[R]. Washington,D.C.:NASA, 1952.
[3] MILWITZKY B, LINDQUIST D C. Evaluation of the reduced-mass method of representing wing-lift effects in free-fall drop tests of landing gears:NACA TN 2400[R]. Washington, D.C.:NASA, 1951.
[4] MILWITZKY B, LINDQUIST D C, POTTER D M. An experimental investigation of wheel spin-up drag loads:NACA TN 3248[R]. Washington, D.C.:NASA, 1954.
[5] LINDQUIST D C. Effects of wing lift and weight on landing-gear loads:NACA TN 2645[R]. Washington, D.C.:NASA, 1952.
[6] LINDQUIST D C. A statistical study of wing lift at ground contact for four transport airplanes:NACA TN 3435[R]. Washington, D.C.:NASA, 1955.
[7] FLUGGE W, COALE C W. The influence of wheel spin-up on landing-gear impact:NACA TN 3217[R]. Washington, D.C.:NASA, 1954.
[8] POTTER D M. An experimental investigation of the effect of wheel prerotation on landing-gear drag loads:NACA TN 3250[R]. Washington, D.C.:NASA, 1954.
[9] MILWITZKY B, COOK F E. Effect of interaction on landing-gear behavior and dynamic loads in a flexible airplane structure:NACA TN 3467[R]. Washington, D.C.:NASA, 1955.
[10] HOOTMAN J A, JONES A R. Results of landing tests of various airplanes:NACA TN 863[R]. Washington, D. C.:NASA, 1942.
[11] 魏小辉, 刘成龙, 聂宏, 等. 半轴式起落架落震动力学及结构参数影响研究[J]. 振动工程学报, 2014, 27(1):40-45. WEI X H, LIU C L, NIE H, et al. Study on drop dynamics and the influence of structural parameters on half-axle landing gear[J]. Journal of Vibration Engineering, 2014, 27(1):40-45(in Chinese).
[12] 聂宏, 魏小辉. 大型民用飞机起落架关键技术[J]. 南京航空航天大学学报, 2008, 40(4):427-432. NIE H, WEI X H. Key technologies for landing gear of large civil aircrafts[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4):427-432(in Chinese).
[13] 刘晖. 起落架缓冲系统特性及其半主动控制技术研究[D]. 南京:南京航空航天大学, 2007:13-26. LIU H. Research on property and semi-active control of landing gear shock absorption system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:13-26(in Chinese).
[14] 晋萍, 聂宏. 起落架着陆动态仿真分析模型及参数优化设计[J]. 南京航空航天大学学报, 2003, 35(5):498-502. JIN P, NIE H. Dynamic simulation model and parameter optimization for landing gear impact[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2003, 35(5):498-502(in Chinese).
[15] 牟让科, 齐丕骞, 吴启荣, 等. 一种自适应双腔缓冲器动力特性研究[J]. 应用力学学报, 2001, 18(z1):96-100. MU R K, QI P Q, WU Q R, et al. Investigation for the dynamic behavior of a dual chamber energy-absorber with adaptive control[J]. Chinese Journal of Applied Mechanics, 2001, 18(z1):96-100(in Chinese).
[16] 豆清波, 史惟琦, 牟让科, 等. 基于落震试验的油-气式起落架气体压缩多变指数变化规律研究[J]. 实验力学, 2015, 30(2):215-220. DOU Q B, SHI W Q, MU R K, et al. On the gas compression polytropic index variation of oil-gas type landing gear based on drop test[J]. Journal of Experiment Mechanics, 2015, 30(2):215-220(in Chinese).
[17] 金秀芬, 李凯. 起落架落震试验修正案影响分析及验证思路研究[J]. 航空工程进展, 2012, 3(4):453-456. JIN X F, LI K. Impact analysis and investigation of compliance approach for the landing gear drop test amendment[J]. Advances in Aeronautical Science and Engineering, 2012, 3(4):453-456(in Chinese).
[18] 王海涛, 李成行. 运输类飞机起落架落震试验适航条款更改及分析[J]. 航空工程进展, 2010, 1(4):365-368. WANG H T, LI C X. Amendment and analysis of airworthiness regulations for landing gears' falling vibration tests in transport category airplanes[J]. Advances in Aeronautical Science and Engineering, 2010, 1(4):365-368(in Chinese).
[19] 蒋祖国, 周占廷, 舒成辉, 等. 我国现有飞机强度规范的更新和发展[J]. 航空学报, 2003, 24(4):339-341. JIANG Z G, ZHOU Z T, SHU C H, et al. Updating and developing of the current aircraft strength specification in China[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4):339-341(in Chinese).
[20] 中国民用航空总局. 中国民用航空规章第25部——运输类飞机适航标准[S]. 北京:中国民用航空总局, 2008. Civil Aviation Administration of China. Civil aviation regulation, Part 25 Air worthness standards:Transport category airplanes[S]. Beijing:Civil Aviation Administration of China, 2008(in Chinese).
[21] 郦正能. 飞行器结构学[M]. 北京:北京航空航天大学出版社, 2010:369-371. LI Z N. Aircraft structure[M]. Beijing:Beihang University Press, 2010:369-371(in Chinese).
[22] 航空工业部科学技术委员会. 飞机起落架强度设计指南[M]. 四川:四川科学技术出版社, 1989:632-634. Science and Technology Committee of Aeronautics and Astronautics. Introduction to design for airplane landing gear[M]. Chengdu:Sichuan Science and Technology Press, 1989:632-634(in Chinese).
[23] 《飞机设计手册》总编委会. 飞机设计手册第14分册:起飞着陆系统设计[M]. 北京:航空工业出版社, 2002:680-762. The Chief Committee of Aircraft Design Manual. Aircraft design manual Vol. 14:Takeoff and landing system design[M]. Beijing:Aviation Industry Press, 2002:680-762(in Chinese).
[24] DENIS H. Aircraft loading and structure layout[M]. Reston, VA:AIAA, 2004:222-223.
文章导航

/