材料工程与机械制造

T700/PEEK热塑性自动铺放预浸纱制备质量控制及性能研究

  • 陈浩然 ,
  • 李勇 ,
  • 还大军 ,
  • 王鑫 ,
  • 褚奇奕
展开
  • 南京航空航天大学 材料科学与技术学院, 南京 210016

收稿日期: 2017-11-03

  修回日期: 2018-01-16

  网络出版日期: 2018-01-16

基金资助

国家重点基础研究发展计划(2014CB046501);江苏高校优势学科建设工程

Quality control and mechanical properties of T700/PEEK thermoplastic prepreg for AFP

  • CHEN Haoran ,
  • LI Yong ,
  • HUAN Dajun ,
  • WANG Xin ,
  • CHU Qiyi
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2017-11-03

  Revised date: 2018-01-16

  Online published: 2018-01-16

Supported by

National Basic Research Program of China (2014CB046501);A Project Funded by the Priority Academic Program Development of Jiangsu High Education Institutions

摘要

为满足高性能热塑性复合材料自动铺丝(AFP)成型工艺的原材料需求,研究了粉末悬浮法浸渍制备T700/PEEK预浸纱关键工艺参数及预浸料性能,分析聚醚醚酮PEEK浸渍连续碳纤维过程中不同工艺参数(悬浊液浓度、超声功率、张力、牵引速率、浸渍温度、辊压温度及压辊间隙)对预浸纱质量的影响规律,利用扫描电子显微镜(SEM)观察T700/PEEK预浸纱内部孔隙率及界面结合状态,将粉末悬浮法制备的T700/PEEK预浸纱模压制备了热塑性复合材料单向层合板试样,并测试了其热塑性复合材料层间剪切强度和拉伸强度。研究结果表明:预浸纱含胶量与粉末悬浮液浓度变化线性正相关,且随超声功率的增大而升高;浸渍过程中伴随温度的升高以及牵引速率的减小,预浸纱宽度变小、孔隙率降低,随着张力的增大,预浸纱宽度增大、孔隙率降低;辊压成型过程中随着温度的提高以及压辊间隙的减小,预浸纱宽度增大、孔隙率降低。综合考虑各工艺参数的影响规律,获得优化的热塑性预浸纱制备工艺参数:浸渍温度为360~370℃,辊压温度为330℃,压辊间隙为0.1 mm,牵引速率为15~20 mm/s,张力为7 N。扫描电镜结果显示树脂与纤维界面结合紧密,复合材料的孔隙率可降低至1.8%,复合材料层间剪切强度为73.43 MPa,纵向拉伸强度达1.71 GPa。

本文引用格式

陈浩然 , 李勇 , 还大军 , 王鑫 , 褚奇奕 . T700/PEEK热塑性自动铺放预浸纱制备质量控制及性能研究[J]. 航空学报, 2018 , 39(6) : 421842 -421842 . DOI: 10.7527/S1000-6893.2017.21842

Abstract

To meet the demand for high performance thermoplastic composites applied to Automated Fiber Placement (AFP) technology, the key technological parameters and mechanical properties of T700 carbon fiber reinforced PEEK (Polyetheretherketone) prepreg manufactured by the slurry method were studied. The influences of different technological parameters (slurry concentration, ultrasonic power, tension, pulling speed, impregnation temperature, rolling temperature, and roller gap) on the quality of the prepreg in the process of continuous carbon fiber impregnated by PEEK were analyzed, and the Scanning Electron Microscope (SEM) was used to verify the porosity and observe the interface morphology of T700/PEEK prepreg. Interlaminar shear strength and tensile strength of the unidirectional composite laminate molded by T700/PEEK prepreg was also tested. The results show that resin content was in linear positive correlation with slurry concentration, and increased with magnifying ultra-sonic power. In the impregnation process, the width and porosity of prepreg decreased with the increase of temperature increment and pulling speed, and as the tension increased, the width of prepreg increased, but the porosity decreased. In the rolling process, with the increase of the temperature and the decrease of the roller gap, the width of prepreg increased and the porosity decreased. The processing parameters were all taken into consideration to obtain the optimum parameters as follows:impregnation temperature 360-370℃, rolling temperature 330℃, roller gap 0.1 mm, pulling speed 20-25 mm/s and tension 7 N. T700/PEEK prepreg with the porosity of 1.8% was produced. SEM photograph confirms that the interface between T700 carbon fiber and PEEK bonded well, and the interlaminar shear strength was up to 73.43 MPa and longitudinal tensile strength was up to 1.71 GPa.

参考文献

[1] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1327-1338(in Chinese).
[2] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. CHEN S J. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):605-610(in Chinese).
[3] VAIDYA U. 热塑性复合材料在航空航天中的应用[J]. 航空制造技术, 2015, 483(14):69-71. VAIDYA U. Thermoplastic composites for aerospace applications[J]. Aeronautical Manufacturing Technology, 2015, 483(14):69-71(in Chinese).
[4] 见雪珍, 杨洋, 袁协尧, 等. 商用客机连续纤维增强热塑性复合材料的现状及其发展趋势[J]. 上海塑料, 2015(2):17-22. JIAN X Z, YANG Y, YUAN X Y, et al. Research on the development of welding technology of fiber reinforced thermoplastics in the aviation field[J]. Shanghai Plastics, 2015(2):17-22(in Chinese).
[5] 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, 27(2):44-47. WANG X G, YU Y, LI S M, et al. The research on fiber reinforced thermoplastic composites[J]. Fiber Composite, 2011, 27(2). 44-47(in Chinese).
[6] BECKWITH S W, SCOTT W. Filament winding vs fiber placement manufacturing technologies[J]. SAMPE Journal, 2008, 44(2):54-55.
[7] 孙宝磊, 陈平, 李伟, 等. 先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技术[J]. 纤维复合材料, 2009, 26(1):43-48. SUN B L, CHEN P, LI W, et al. Prepreg preparation and filament winding of advanced thermoplastic composites[J]. Fiber Composite, 2009, 26(1):43-48(in Chinese).
[8] 宋清华, 文立伟, 严飙, 等. 热塑性树脂基复合材料自动铺带技术[J]. 航空制造技术, 2011(15):34-36. SONG Q H, WEN L W, YAN B, et a1. Automated tape laying technology of thermoplastic resin-based composites[J]. Aeronautical Manufacturing Technology, 2011(15):34-36(in Chinese).
[9] 李蓓蓓, 高骁, 李炜. 国内外预浸纱制备技术及质量控制[J]. 材料导报, 2014(s2):124-127. LI B B, GAO X, LI W. Fabrication technology and quality control of towpreg[J]. Materials Review, 2014(s2):124-127(in Chinese).
[10] 叶鼎铨. 国外FRP预浸料发展概况[J]. 玻璃纤维, 2013(6):10-17. YE D Q. Foreign developments of FRP prepregs[J]. Fiber Glass, 2013(6):10-17(in Chinese).
[11] NYGARD P. Continuous glass fiber-polypropylene composites made by melt impregnation:influence of processing method[J]. Journal of Thermoplastic Composite Materials, 2004, 17(2):167-184.
[12] 隋月梅. 热塑性树脂基复合材料[J]. 黑龙江科学, 2010(5):31-33. SUI Y M. Thermoplastic resin matrix composites[J]. Heilongjiang Science, 2010(5):31-33(in Chinese).
[13] 邓杰, 李辅安, 刘建超. 碳纤维增强PEEK预浸带制备工艺探索研究[J]. 宇航材料工艺, 2003, 33(6):30-34. DENG J, LI F A, LIU J C. Technology of carbon fiber reinforced polyetheretherketone (PEEK) prepregs[J]. Aerospace Material and Technology, 2003, 33(6):30-34.
[14] 刘川. 连续碳纤维增强聚醚醚酮复合材料的制备及性能研究[D]. 长春:吉林大学, 2015:64-65. LIU C. Preparation and properties of continuous carbon fiber reinforced polyetheretherketone(PEEK) composites[D]. Changchun:Jilin University, 2015:64-65(in Chinese).
[15] 李华宙. 连续碳纤维热塑性预浸带的制备机理及实验研究[D]. 广州:华南理工大学, 2015:25-30. LI H Z. Manufacturing mechanism and experimental study on continuous carbon fiber reinforced thermoplastic towpreg tape[D]. Guangzhou:South China University of Technology, 2015:25-30(in Chinese).
[16] 陈书华, 韩建平, 王喜占, 等. 连续碳纤维增强聚醚醚酮预浸带成型工艺及性能[J]. 宇航材料工艺, 2016, 46(4):48-51. CHEN S H, HAN J P, WANG X Z, et al. Preparation and properties of continuous carbon fiber reinforced polyetheretherketone prepreg[J]. Aerospace Material and Technology, 2016, 46(4):48-51(in Chinese).
[17] MICHAUD V, MANSON J A E. Impregnation of compressible fiber mats with a thermoplastic resin. Part I:Theory[J]. Journal of Composite Materials, 2001, 35(13):1150-1173.
[18] WANG X, MAYER C, NEITZEL M. Some issues on impregnation in manufacturing of thermoplastic composites by using a double belt press[J]. Polymer Composites, 2010, 18(6):701-710.
[19] 张晓明, 张淑萍, 刘其贤. PEEK树脂的流变性能研究[J]. 纤维复合材料, 1990(3):16-21. ZHANG X M, ZHANG S P, LIU Q X. Study on rheological properties of PEEK resin[J]. Fiber Composites, 1990(3):16-21(in Chinese).
[20] 周天睿, 方立, 万明, 等. 连续CF增强PEEK复合材料层压板的制备工艺[J]. 工程塑料应用, 2016, 44(7):52-56. ZHOU T R, FANG L, WAN M, et al. Preparation process of continuous CF reinforced PEEK composite laminates[J]. Engineering Plastic Application, 2016, 44(7):52-56(in Chinese).
[21] BATES P J, KENDALL J, TAYLOR D, et al. Pressure build-up during melt impregnation[J]. Composites Science and Technology, 2001, 62(3):379-384.
文章导航

/