为解决航空航天管路组件的装配质量及效率问题,设计并实现了一套新型自动化可重构工装系统。为实现管路工装系统定位器的自动配置,首先基于D-H法建立了定位器的运动学模型,并以配置系统解析的管接头位姿参数为目标值求解出了定位器的配置参数,为管路工装模型的自动配置提供了数据依据。在此基础上,利用数值法求出了定位器的工作空间,并以工作空间的最大包络直径作为干涉圆直径提出了定位器的运动路径规划方法。然后,基于坐标变换理论和空间尺寸链方法,建立了定位器的定位误差模型,为定位器乃至整个管路工装系统的性能分析提供了理论依据。最后,以某航空发动机一套管路模型的自动配置和性能分析过程为例给出了应用验证。
To improve the assembly quality and efficiency of the aerospace pipeline, a novel automatic reconfigurable assembly fixture system is designed and implemented. To realize automatic configuration of the locators for the fixture system, a kinematic model for the locator is established based on the D-H method. The configuration parameters of the locator are solved in terms of the pose parameters of the corresponding tube joint that are analyzed and extracted from the configuration system, so as to provide the data basis for automatic configuration of the fixture model. Based on the configuration parameters, the workspace of the locator is obtained using the numerical analysis approach, and the path planning method for the locator is developed, with the maximum envelope diameter of the locator workspace being used as the interference diameter of the collision circle. According to the theory of homogeneous coordinate transformation and the method of space dimension chain, a position error model for the locator is proposed, which can provide a theoretical basis for performance analysis of the locator and even of the whole fixture. Automatic configuration and performance analysis of an aero-engine pipeline model is given for verification.
[1] 李光俊, 兰勇, 孙林, 等. 柔性组合夹具在飞机导管数字化快速制造中的应用[J]. 航空制造技术, 2012, 405(9):58-61. LI G J, LAN Y, SUN L, et al. Application of flexible combine-clamping digital rapid production for aircraft tube[J]. Aeronautical Manufacturing Technology, 2012, 405(9):58-61(in Chinese).
[2] 张佳朋, 高立国, 张斌, 等. 面向航天器管路焊装过程的集成制造技术[J]. 计算机集成制造系统, 2014, 20(11):2743-2757. ZHANG J P, GAO L G, ZHANG B, et al. Integrated manufacturing technology of pipe welding assembly process in spacecraft[J]. Computer Integrated Manufacturing Systems, 2014, 20(11):2743-2757(in Chinese).
[3] 韩志仁, 吕彦盈, 刘宝明, 等. 飞机焊接导管数字化制造技术研究[J]. 航空制造技术, 2017, 527(8):95-98. HANG Z R, LV Y Y, LIU B M, et al. Research on the digital manufacturing technology of aircraft welding tube[J]. Aeronautical Manufacturing Technology, 2017, 527(8):95-98(in Chinese).
[4] 罗敏, 周京平. 柔性工装在导管数字化制造中的应用[J]. 航空制造技术, 2014(S1):158-161. LUO M, ZHOU J P. Application of flexible fixture in digital production for aeroengine pipe[J]. Aeronautical Manufacturing Technology, 2014(S1):158-161(in Chinese).
[5] YU F W, THORNTON A C. Tube production and assembly systems:The impact of compliance and variability on yield[C]//ASME Design Automation Conference, 2000.
[6] 赵长喜, 姜坤, 张佳朋, 等. 航天器管路数字化制造技术与实践[J]. 航天器环境工程, 2013, 30(6):659-662. ZHAO C X, JIANG K, ZHANG J P, et al. Digital manufacturing technology and practice for spacecraft pipelines[J]. Spacecraft Environment Engineering, 2013, 30(6):659-662(in Chinese).
[7] OLABANJI O, MPOFU K, BATTAIA O. Design, simulation and experimental investigation of a novel reconfigurable assembly fixture for press brakes[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(1-4):663-679.
[8] JONSSON M, OSSBAHR G. Aspects of reconfigurable and flexible fixtures[J]. Production Engineering, 2010, 4(4):333-339.
[9] MOLFINO R, ZOPPI M, ZLATANOV D. Reconfigurable swarm fixtures[C]//2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, 2009:730-735.
[10] 门延武, 周凯. 飞行器智能柔性工装无线控制系统[J]. 航空学报, 2010, 31(2):377-387. MEN Y W, ZHOU K. Wireless control system of aircraft intelligent flexible process-equipment[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):377-387(in Chinese).
[11] MULLER R, ESSER M, VETTE M. Reconfigurable handling systems as an enabler for large components in mass customized production[J]. Journal of Intelligent Manufacturing, 2013, 24(5):977-990.
[12] 熊瑞斌, 黄浦缙, 柯映林. 一种适用于飞机装配的新型随动定位器[J]. 航空学报, 2009, 30(12):2469-2475. XIONG R B, HUANG P J, KE Y L. A new posture following and keeping fixture for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2469-2475(in Chinese).
[13] 樊伟, 郑联语, 王亚辉. 面向管路组件装配的自动化可重构柔性工装系统[J/OL]. 计算机集成制造系统. (2017-09-24)[2017-10-10]. http://kns.cnki.net/kcms/detail/11.5946.TP.20170924.1515.034.html FAN W, ZHENG L Y, WANG Y H. An automatic recenfigurable and flexible fixture system for pipeline components in assembly process[J/OL]. Computer Integrated Manufacturing Systems. (2017-09-24)[2017-10-10]. http://kns.cnki.net/kcms/detail/11.5946.TP.20170924.1515.034.html (in Chinese).
[14] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics-Transactions of the ASME, 1955, 22:215-221.
[15] 雷沛, 郑联语. 面向飞机大部件调姿的PPPS机构球铰点中心位置闭环标定方法[J]. 航空学报, 2016, 37(10):3186-3196. LEI P, ZHENG L Y. Closed-loop calibration method for PPPS mechanism ball joint center position for posture adjustment of large aircraft components[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3186-3196(in Chinese).
[16] 郑联语, 谷强, 汪叔淳. 装夹规划中确定工件定位基准的神经网络决策机制[J]. 航空学报, 2001, 22(2):130-134. ZHENG L Y, GU Q, WANG S CH. Decision mechanism for workpiece locating datum based on neural network in setup planning[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(2):130-134(in Chinese).
[17] 宿鲁艳, 梁志伟. RoboCup3D仿真平台中足球机器人的避障规划[C]//32nd Chinese Control Conference, 2013. SU L Y, LIANG Z W. Collision-avoidance planning of soccer robot in RoboCuP 3D simulation environment[C]//32nd Chinese Control Conference, 2013(in Chinese).
[18] 朱光辰, 魏鹏威, 侯向阳, 等. 提高航天器管路总装效率的技术途径研究[J]. 航天器工程, 2009, 18(4):78-83. ZHU G C, WEI P W, HOU X Y, et al. Study on improving integration efficiency of spacecraft pipeline[J]. Spacecraft Engineering, 2009, 18(4):78-83(in Chinese).