电子电气工程与控制

一种基于轨道根数约束的最优制导方法

  • 李超兵 ,
  • 吕春红 ,
  • 尚腾
展开
  • 北京航天自动控制研究所, 北京 100854

收稿日期: 2017-08-18

  修回日期: 2018-01-16

  网络出版日期: 2018-01-16

An optimal guidance method based on orbital element constraints

  • LI Chaobing ,
  • LYU Chunhong ,
  • SHANG Teng
Expand
  • Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Received date: 2017-08-18

  Revised date: 2018-01-16

  Online published: 2018-01-16

摘要

针对航天器空间变轨的制导问题,研究了一种基于轨道根数约束的最优制导方法。在地心惯性坐标系下直接建立航天器的最优控制模型,给出了位置速度表达式和协态变量初值之间的关系;进一步,在不约束真近点角的前提下,推导了5个轨道根数的约束方程,并通过对轨道根数和最优控制理论中协态方程的特性分析,获得了另外两个约束方程。协态变量初值可直接通过求解7个完整约束方程组获得,进而得到最优推力方向。仿真验证了所提制导方法的有效性。

本文引用格式

李超兵 , 吕春红 , 尚腾 . 一种基于轨道根数约束的最优制导方法[J]. 航空学报, 2018 , 39(4) : 321680 -321680 . DOI: 10.7527/S1000-6893.2018.21680

Abstract

This paper proposes an optimal guidance method based on orbital element constraints, for the guidance problem during orbital transfer of spacecraft. The optimal control model for the spacecraft is established in the earth centered inertial coordinate frame directly. The relationship between expressions for the position and velocity and the initial values of costate variables is then given. Besides, five orbital element constraint equations are derived without constraint on the true anomaly. The other two constraint equations are given based on the analysis of characteristics of orbital elements and costate equations under the optimal control framework, which include the constraint and scale property of the established optimal conditions, respectively. The initial values of costate variables can be obtained by solving the seven complete constraint equations, and the optimal thrust direction can then be given. Simulations demonstrate the effectiveness of the proposed guidance method.

参考文献

[1] CHEN S Y, XIA Q L. A Multiconstrained ascent guidance method for solid rocket-powered launch vehicles[J]. International Journal of Aerospace Engineering, 2016(1):1-11.
[2] QUADRELLI M B, WOOD L J, RIEDEL J E, et al. Guidance, navigation, and control technology assessment for future planetary science missions[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(7):1165-1186.
[3] VACHON A, DESBIENS A, GAGNON E, et al. Launch ascent guidance by discrete multi-model predictive control[J]. Acta Astronautica, 2014, 95:101-110.
[4] HULL D G, HARRIS M W. Optimal solutions for quasiplanar ascent over a spherical Moon[J]. Journal of Guidance, Control and Dynamics, 2012, 35(4):1218-1223.
[5] LU P, FORBES S, BALDWIN M. A versatile powered guidance algorithm[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2012:4843-4858.
[6] JEB S O, JOHN H W, TANNEN S V, et al. Space launch system ascent flight dontrol design[DB/OL].http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140008731.pdf.
[7] LAN X J, LIU L, WANG Y J. Online trajectory planning and guidance for reusable launch vehicles in the terminal area[J]. Acta Astronautica, 2016, 118:237-245.
[8] HALBE O, RAJA R G, PADHI R. Robust reentry guidance of a reusable launch vehicle using model predictive static programming[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1):134-148.
[9] SONG E J, CHO S, ROH W R. A comparison of iterative explicit guidance algorithms for space launch vehicles[J]. Advances in Space Research, 2015, 55(1):463-476.
[10] TIAN B, FAN W, SU R, et al. Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1639-1650.
[11] LU B, CUI N, FU Y, et al. Closed-loop atmospheric ascent guidance based on finite element method[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2015, 87(5):393-401.
[12] 陈新民, 余梦伦. 迭代制导在运载火箭上的应用研究[J]. 宇航学报, 2003, 24(5):484-489. CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics, 2003, 24(5):484-489(in Chinese).
[13] 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学E辑:技术科学, 2009, 39(4):696-706. RU J X. An iterative guidance method for liquid launch vehicle[J]. Science in China Series E:Technological Sciences, 2009, 39(4):696-706(in Chinese).
[14] 池贤彬, 岳晓奎, 李鹏. 基于凸优化的自主交会迭代制导方法[J]. 中国空间科学技术, 2014(1):26-34. CHI X B, YUE X K, LI P, et al. Iterative guidance method of autonomous rendezvous based on convex optimization[J]. Chinese Space Science & Technology, 2014(1):26-34.
[15] LU P, GRIFFIN B J, DUKEMAN G A, et al. Rapid optimal multiburn ascent planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1656.
[16] LU P, SUN H, TSAI B. Closed-loop endoatmospheric ascent guidance[J]. Journal of Guidance Control and Dynamics, 2003, 26(2):283-294.
[17] LU P, PAN B. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2):404-414.
[18] 傅瑜, 陈功, 卢宝刚,等. 基于最优解析解的运载火箭大气层外自适应迭代制导方法[J]. 航空学报, 2011, 32(9):1696-1704. FU Y, CHEN G, LU B G, et al. A vacuum adaptive iterative guidance method of launch vehicle based on optimal analytical solution[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1696-1704(in Chinese).
[19] 郑旭, 高长生, 陈尔康,等. 一种基于大气层外解析动力学模型的最优迭代制导方法[J]. 西北工业大学学报, 2016, 34(6):1093-1100. ZHENG X, GAO C S, CHEN E K, et al. An optimal iterative guidance method based on exoatmospheric analytical dynamic model[J]. Journal of Northwestern Polytechnical University, 2016, 34(6):1093-1100(in Chinese).
[20] 邓逸凡, 李超兵, 王志刚. 一种基于轨道要素形式终端约束的航天器空间变轨迭代制导算法[J]. 航空学报, 2015, 36(6):1975-1982. DENG Y F, LI C B, WANG Z G. An iterative guidance algorithm using orbital elements as terminal constraints for spacecraft orbit transfer[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1975-1982(in Chinese).
[21] 李超兵, 王晋麟, 李海. 一种基于多终端约束的最优制导方法[J]. 中国空间科学技术, 2016, 36(5):9-17. LI C B, WANG J L, LI H. An optimal guidance method based on multiple terminal constraints[J]. Chinese Space Science and Technology, 2016, 36(5):9-17(in Chinese).
文章导航

/