流体力学与飞行力学

后缘小翼对旋翼气动特性的控制机理及参数分析

  • 马奕扬 ,
  • 招启军
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016

收稿日期: 2017-08-14

  修回日期: 2018-01-16

  网络出版日期: 2018-01-16

基金资助

国家自然科学基金(11272150,11572156);江苏省普通高校研究生科研创新计划项目(KYLX15_0244)

Control mechanism and parameter analyses of aerodynamic characteristics of rotor via trailing-edge flap

  • MA Yiyang ,
  • ZHAO Qijun
Expand
  • National Key Laboratory of Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2017-08-14

  Revised date: 2018-01-16

  Online published: 2018-01-16

Supported by

National Natural Science Foundation of China (11272150, 11572156); Funding of Jiangsu Innovation Program for Graduate Education (KYLX15_0244)

摘要

针对后缘小翼(TEF)的典型运动参数对旋翼气动特性的控制进行了分析研究。为克服变形网格方法可能导致网格畸变的不足,发展了一套适用于前飞状态带后缘小翼旋翼的运动嵌套网格方法。基于非定常雷诺平均Navier-Stokes(URANS)方程、k-ω剪切应力输运(SST)湍流模型和Roe-MUSCL插值格式,采用含LU-SGS隐式推进的双时间方法及并行技术,建立了一套适用于带有后缘小翼控制的旋翼前飞非定常流动特性模拟的高效CFD方法。以带后缘小翼的SMART旋翼为算例,对比了桨叶剖面等效法向力的计算结果,验证了CFD方法的有效性。着重开展了前飞状态旋翼后缘小翼的控制分析,在操纵量不变的情况下,分别研究了后缘小翼偏转幅值、偏转频率、安装位置及宽度等参数对旋翼气动力的影响特性,获得了典型参数对旋翼气动特性的控制规律。进一步研究了配平状态下后缘小翼对旋翼气动特性的参数影响。结果表明:后缘小翼可以充分发挥旋翼在前行侧的升力潜能,同时降低后行侧动态失速过程中旋翼的阻力和扭矩;在相同的旋翼拉力情况下,通过安装后缘小翼可以将旋翼阻力系数和扭矩系数分别降低17%和29%,升阻比提高14%。

本文引用格式

马奕扬 , 招启军 . 后缘小翼对旋翼气动特性的控制机理及参数分析[J]. 航空学报, 2018 , 39(5) : 121671 -121671 . DOI: 10.7527/S1000-6893.2018.21671

Abstract

Control effects of typical motion parameters of Trailing-Edge Flap (TEF) on the dynamic stall characteristics of the rotor are investigated. To overcome the shortcoming of the deformable grid approach, which may result in distortion of grid, a moving-embedded grid method is developed to predict the flowfield of the rotor with TEF control in the forward flight. Based on Unsteady Reynolds Averaged Navier-Stokes (URANS) equations, k-ω Shear Stress Transport (SST)turbulence model, Roe-MUSCL scheme, implicit LU-SGS scheme, parallel techniques and dual-time method, a high-efficiency CFD method is developed to predict the unsteady aerodynamic characteristics of rotor with TEF control. A comparison of calculation and experiment results of the normal force of the forward flight of the SMART rotor with TEF demonstrates validity of the proposed CFD method. Control effects of the forward flight of the rotor via trailing-edge flap are analyzed. Effects of the parameters including the angular amplitude, non-dimensional frequency, location and width of the trailing-edge flap on the aerodynamic characteristics of the rotor are explored with the same maneuvering. Parametric analyses of rotor aerodynamic characteristics are further investigated in the trimming condition. The results indicate that with TEF, rotors can reach their full lift potential in the advancing side, and the drag and torque of the rotor caused by dynamic stall in retreating blades can be reduced. With the same rotor thrust, the drag and torque coefficients of the rotor can be reduced by about 17% and 29% respectively control and the lift-to-drag ratio is increased by 14% via TEF.

参考文献

[1] YU Y H, LEE S, MCALISTER K W, et al. Dynamic stall control for advanced rotorcraft application[J]. AIAA Journal, 1995, 33(2):289-295.
[2] ZHAO G Q, ZHAO Q J. Experimental investigations for parametric effects of dual synthetic jets on delaying stall of a thick airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(2):346-357.
[3] VISWAMURTHY S R, GANGULI R. Effect of piezoelectric hysteresis on helicopter vibration control using trailing-edge flaps[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1201-1209.
[4] HASSAN A, STRAUB F, NOONAN K. Experimental/numerical evaluation of integral trailing edge flaps for helicopter rotor applications[J]. Journal of the American Helicopter Society, 2005, 50(1):3-17.
[5] DIETERICH O, ENENKL B, ROTH D. Trailing edge flaps for active rotor control aeroelastic characteristics of the ADASYS rotor system[C]//American Helicopter Society 62nd Annual Forum Proceedings. Alexandria, VA:The AHS International, Inc., 2006.
[6] ROTH D, ENEKL B, DIETERICH O. Active rotor control by flaps for vibration reduction-full scale demonstrator and first flight test results[C]//Proceedings of 32nd European Rotorcraft Forum, 2006.
[7] RABOURDIN A, MAURICH J, DIETERICH O, et al. Blue Pulse active rotor control at Airbus Helicopters-New EC145 demonstrator and flight test results[C]//American Helicopter Society 70th Annual Forum Proceedings. Alexandria, VA:The AHS International, Inc., 2009.
[8] SHEN J, CHOPRA I. Aeroelastic stability of trailing-edge flap helicopter rotors[J]. Journal of the American Helicopter Society, 2003, 48(1):236-243.
[9] STRAUB F K, CHARLES B D. Aeroelastic analysis of rotors with trailing edge flaps using comprehensive codes[C]//55th Annual Forum of the American Helicopter Society International. Alexandria, VA:The AHS International, Inc., 1999.
[10] MISHRA A, SITARAMAN J, BAEDER J, et al. Computational investigation of trailing edge flap for control of vibration[C]//AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2007:1-12.
[11] MISHRA A, ANANTHAN S, BAEDER J. Coupled CFD/CSD prediction of the effects of trailing edge flaps on rotorcraft dynamic stall alleviation[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013:423-429.
[12] JAIN R, YEO H, CHOPRA I. Computational fluid dynamics-computational structural dynamics analysis of active control of helicopter rotor for performance improvement[J]. Journal of the American Helicopter Society, 2010, 55:42004.
[13] RAVICHANDRAN K, FALLS J, ANANTHAN S, et al. Active rotor controls for vibration reduction and performance enhancement[C]//Proceedings of the AHS Specialists' Conference on Aeromechanics. Alexandria, VA:The AHS International, Inc., 2010.
[14] 刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5):1028-1035. LIU Y, XIANG J W. Effect of the trailing edge flap on dynamic stall performance of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1028-1035(in Chinese).
[15] 马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3):120312. MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120312(in Chinese).
[16] 赵国庆, 招启军, 王清. 旋翼翼型非定常动态失速特性的CFD模拟及参数分析[J]. 空气动力学学报, 2015, 33(1):72-81. ZHAO G Q, ZHAO Q J, WANG Q. Simulations and parametric analyses on unsteady dynamic stall characteristics of rotor airfoil based on CFD method[J]. Acta Aerodynamica Sinica, 2015, 33(1):72-81(in Chinese).
[17] ROE P L. Approximate Riemann solvers, parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[18] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1997, 32(1):101-136.
[19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[20] SRINIVASAN G R, BAEDER J D. Flowfield of lifting rotor in hover:A Navier-Stokes simulation[J]. AIAA Journal, 1992, 30(10):2371-2378.
[21] KIM J W, PARK S H, YU Y H. Euler and Navier-Stokes simulations of helicopter rotor blade in forward flight using an overlapped grid solver:AIAA-2009-4268[R]. Reston, VA:AIAA, 2009.
[22] ANANTHAN S, BAEDER J, SIM B W, et al. Prediction and validation of the aerodynamics, structure dynamics, and acoustics of the SMART rotor using a loosely-coupled CFD-CSD analysis[C]//American Helicopter Society 66th Annual Forum. Alexandria, VA:The AHS International, Inc., 2010:2031-2057.
文章导航

/