电子电气工程与控制

输入受限的高超声速飞行器鲁棒反演控制

  • 骆长鑫 ,
  • 张东洋 ,
  • 雷虎民 ,
  • 卜祥伟 ,
  • 叶继坤
展开
  • 1. 空军工程大学 研究生院, 西安 710051;
    2. 空军工程大学 防空反导学院, 西安 710051

收稿日期: 2017-10-16

  修回日期: 2017-12-29

  网络出版日期: 2017-12-29

基金资助

国家自然科学基金(61703421);航空科学基金(20150096006)

Robust backstepping control of input-constrained hypersonic vehicle

  • LUO Changxin ,
  • ZHANG Dongyang ,
  • LEI Humin ,
  • BU Xiangwei ,
  • YE Jikun
Expand
  • 1. College of Graduate, Air Force Engineering University, Xi'an 710051, China;
    2. College of Air and Missile Defense, Air Force Engineering University, Xi'an 710051, China

Received date: 2017-10-16

  Revised date: 2017-12-29

  Online published: 2017-12-29

Supported by

National Natural Science Foundation of China (61703421); Aeronautical Science Foundation of China (20150096006)

摘要

针对存在参数摄动的吸气式高超声速飞行器(AHV)弹性体模型,考虑执行机构幅值和速率受限问题,提出了一种基于辅助误差补偿策略的鲁棒反演控制方法。采用改进的辅助系统,保证了执行机构在幅值与速率同时达到饱和时闭环控制系统的稳定性和跟踪误差的有界性;采用有限时间收敛微分器(FD),实现了对虚拟指令及其一阶导数的有效估计,并在此基础上,设计非线性干扰观测器(NDO),对模型不确定项进行了平滑估计,进一步提高了控制精度。通过仿真,验证了所设计控制方法的有效性。

本文引用格式

骆长鑫 , 张东洋 , 雷虎民 , 卜祥伟 , 叶继坤 . 输入受限的高超声速飞行器鲁棒反演控制[J]. 航空学报, 2018 , 39(4) : 321801 -321801 . DOI: 10.7527/S1000-6893.2017.21801

Abstract

A robust backstepping control method based on auxiliary error compensation is proposed to solve the problem of amplitude and rate limitation of the actuator of the flexible Air-breathing Hypersonic Vehicle (AHV) model with parameter perturbation. The improved auxiliary system is used to ensure the stability of the closed-loop system and the boundedness of the tracking error when the amplitude and rate are constrained at the same time. The Finite-time-convergent Differentiator (FD) is used to realize effective estimation of the virtual instruction and its first derivative, and then a Nonlinear Disturbance Observer(NDO) is designed. The uncertainties of the model are estimated smoothly to further improve the control precision. The effectiveness of the proposed control method is verified by simulation.

参考文献

[1] DUAN H B, LI P. Progress in control approaches for hypersonic vehicle[J]. Science China Technological Sciences, 2012, 55(10):2965-2970.
[2] XU B, SHI Z K. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7):070201-1-19.
[3] 吴宏鑫, 孟斌. 高超声速飞行器控制研究综述[J]. 力学进展, 2009, 39(6):756-765. WU H X, MENG B. Review on the control of hypersonic flight vehicles[J]. Advances in Mechanics, 2009, 39(6):756-765(in Chinese).
[4] 方洋旺, 柴栋. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7):1776-1786. FANG Y W, CHAI D. Status and development trend of the guidance and control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinca, 2014, 35(7):1776-1786(in Chinese).
[5] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901-1913. SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese).
[6] 葛东明. 临近空间高超声速飞行器鲁棒变增益控制[D]. 哈尔滨:哈尔滨工业大学, 2011. GE D M, Robust gain-scheduling control of hypersonic vehicle in near space[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[7] XU B, SHI Z K, YANG C G, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint[J]. Nonlinear Dynamics, 2013, 73:1849-1861.
[8] GAO G, WANG J Z. Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties[J]. Journal of the Franklin Institute, 2013, 350:1155-1188.
[9] GAO G, WANG J Z, WANG X H. Robust tracking control for an air-breathing hypersonic vehicle with input constraints[J]. International Journal of Systems Science, 2014, 45(12):2466-2479.
[10] XU B, HUANG X Y, WANG D W, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1):162-174.
[11] XU B, WANG S X, GAO D X, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators[J]. Journal of Intelligent & Robotic Systems, 2014, 73:233-247.
[12] 李静, 左斌. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2):220-233. LI J, ZUO B. Adaptive terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J]. Acta Aeronautica et Astronautica Sinca, 2012, 33(2):220-233(in Chinese).
[13] ZONG Q, WANG F, TIAN B L, et al. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78:289-315.
[14] CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica, 2011, 47(3):452-465.
[15] BU X W, WU X Y, MA Z, et al. Novel auxiliary error compensation design for the adaptive neural control of a constrained flexible air-breathing hypersonic vehicle[J]. Neurocomputing, 2016, 171:313-324.
[16] FARRELL J, SHARMA M, POLYCARPOU M. Backstepping-based flight control with adaptive function approximation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6):1089-1102.
[17] BU X W, WU X Y, TIAN M Y, et al. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints[J]. ISA Transactions, 2015, 58:237-247.
[18] PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869.
[19] BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2):374-387.
[20] FIORENTINI L, SERRANI A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48:1248-1261.
[21] FIORENTINI L, SERRANI A, BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-416.
[22] 时建明, 王洁, 王琨, 等. 吸气式高超声速飞行器纵向运动反演控制器设计[J]. 西安交通大学学报, 2013, 47(3):102-107. SHI J M, WANG J, WANG K, et al. Design of backstepping controller for longitudinal motion of an air-breathing hypersonic vehicle[J]. Journal of Xi'an Jiaotong University, 2013, 47(3):102-107(in Chinese).
[23] 王肖, 郭杰. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3):320287. WANG X, GUO J. Robust nonsingular Terminal sliding mode backstepping control foe air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinca, 2017, 38(3):320287(in Chinese).
[24] XU B, GAO D X, WANG S X. Adaptive neural control based on HGO for hypersonic flight vehicles[J]. Science China Information Sciences, 2011, 54(3):511-520.
[25] BU X W, WU X Y, CHEN Y X, et al. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems[J]. International Journal of Control, Automation, and Systems, 2015, 13(3):595-602.
[26] WANG X H, CHEN Z Q, YANG G. Finite-time-convergent differentiator based on singular perturbation technique[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1731-1737.
文章导航

/