拓展了密切锥乘波体设计方法的应用,推导了设计方法中激波出口型线、流线追踪起始线与平面形状轮廓线之间的几何关系,建立了定平面乘波体设计方法。通过定制乘波体的平面形状引入涡效应,提出涡波效应宽速域气动布局的概念,即在高超声速状态下使用激波效应、在低速状态下使用漩涡效应提升布局的总体性能。以双后掠布局为例,使用CFD方法评估其高速和低速状态的气动性能,与带锥体的平板进行对比,分析了升阻比、升力系数以及流场特性,初步给出了非线性增升效果。计算结果表明:当前定平面乘波体布局在低速状态和高超声速状态均具有较好的气动性能,弥补了传统乘波体的性能缺陷,为宽速域气动布局的设计提供了新的思路。
This paper extends the concept of the osculating-cone waverider. The global geometrical relationships between the inlet capture curve, flow capture tube and planform contour line are derived to develop the design for the planform-controllable waverider. The vortex effect is introduced by customizing the planform for the waverider. The concept of aerodynamic width-velocity-range design with vortex-shock effects is proposed, meaning employing the vortex effect under subsonic condition and the shock effect under the super/hypersonic condition to ensure a general performance. The CFD technology is used to simulate the aerodynamic performance of the double swept configuration at the subsonic and hypersonic states. A comparison with the flat plate model with respect to the lift, drag and flow characteristics at the subsonic and supersonic states is made. Simulation results show that the planform-controllable waverider has satisfying performance under both subsonic and hypersonic condition, overcoming some deficiencies of the traditional waverider, and providing insight into the width-velocity-range design.
[1] DIETRICH K. The aerodynamic design of aircraft:AIAA-2012-0448[R]. Reston, VA:AIAA, 2012.
[2] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Aeronautical Journal, 1959, 63(585):521-528.
[3] JONES J G, MOORE K C, PIKE J, et al. A method fo designing lifting configurations for high supersonic speeds using axisymmetric flow field[J]. Archive of Applied Mechanics, 1968, 37(1):56-72.
[4] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6):537-545.
[5] LOBBIA M A, SUZZKI K. Experimental investiga-tion of a Mach 3.5 waverider designed using computa-tional fluid dynamics[J]. AIAA Journal, 2015, 53(6):1590-1601.
[6] SOBIECZKY H, DOUGHERTY F C, JONES K. Hyper-sonic waverider design from given shock waves[C]//In-ternational Hypersonic Waverider Symposium, 1990.
[7] MILLER D S, WOOD R M. Lee-side flow over delta wings at supersonic speed:NASA TP-2430[R]. Washington, D.C.:NASA, 1985.
[8] STARKEY R, LEWIS M. A simple analytical model for parametric studies of hypersonic waveriders:AIAA-1998-1616[R]. Reston, VA:AIAA, 1998.
[9] RODI E P. The osculating flowfield method of waverider geometry generation:AIAA-2005-0511[R]. Reston, VA:AIAA, 2005.
[10] RODI E P. Geometrical relationships for osculating cones and osculating flowfield waveriders:AIAA-2011-1188[R]. Reston, VA:AIAA, 2011.
[11] MOELDER S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7):1252-1255.
[12] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6):120808. LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120808(in Chinese).
[13] HUANG X Z, MEBARKI Y, BENMEDDOUR A, et al. Experimental and numerical studies of geometry effects on UCAV's aerodynamics:AIAA-2004-0403[R]. Reston, VA:AIAA, 2004.
[14] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[15] VENKATA KRISHNAN V. On the accuracy of limiters and convergence to steady state solutions:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
[16] KERMANI M J, PLETT E G. Modified entropy correction formula for the Roe scheme:AIAA-2001-0083[R]. Reston, VA:AIAA, 2001.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[18] WANG Z J, CHEN R F. Fast, block lower-upper Symmet-ric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[19] BOWCUTT K G. Optimization of hypersonic waveriders derived from cone flows-Including viscous effects[D]. Maryland:University of Maryland, 1986.
[20] PATRICK E R. Vortex lift waverider configurations:AIAA-2012-1238[R]. Reston, VA:AIAA, 2012.