A device for measuring and controlling the thickness of thin electrolyte layer is set up. Using post-macro reference electrode to form three electrode system, the polarization curves and galvanic current of the coupling system of 2A12 aluminum alloy, TC18 titanium alloy and 30CrMnSiNi2A high strength steel are measured under 100 μm 3.5wt%NaCl electrolyte layer. By the established Comsol corrosion simulation model based on the shell current distribution, the potential distribution and current density distribution of the electrode of 100 μm thin electrolyte layer are obtained.The galvanic current is got by surface integral of the electrode. Parametric scanning is performed for different electrode areas, and the influence of different area ratios on galvanic current is discussed. The result shows that the galvanic current value obtained by the simulation model agrees well with the experimental data. In the 2A12/30CrMnSiNi2A/TC18 multi-electrode system, 2A12 acts as an anode and TC18/30CrMnSiNi2A acts as the cathode.Moreover, the polarity of cathode and anode does not change with the change of area ratio.The galvanic current mainly concentrates between 30CrMnSiNi2A and 2A12.The galvanic current is linearly related to the area of TC18 and its logarithm is linear with the logarithm of the area of 2A12 and 30CrMnSiNi2A. Using the simulation model established in this paper, the atmospheric corrosion of designed lap joints is simulated. The simulation result shows that current density distribution is more concentrated at the washer, the joint of 2A12 and 30CrMnSiNi2A, the rivet on the junction of 2A12 and TC18, and corrosion is easy to occur in these areas. The result is consistent with the results of exposure test, showing that the simulation model has a good prediction of corrosion distribution of multi-electrode couples.
[1] ZHANG G A, YU N, YANG L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corrosion Science, 2014, 86:202-212.
[2] PALANI S, HACK T, DECONINCK J, et al. Validation of predictive model for galvanic corrosion under thin electrolyte layers:An application to aluminium 2024-CFRP material combination[J]. Corrosion Science, 2014, 78:89-100.
[3] PAN Y, WU G, CHENG X, et al. Galvanic corrosion behaviour of carbon fibre reinforced polymer/magnesiμm alloys coupling[J]. Corrosion Science, 2015, 98:672-677.
[4] HÅKANSSON E, HOFFMAN J, PREDECKI P, et al. The role of corrosion product deposition in galvanic corrosion of aluminum/carbon systems[J]. Corrosion Science, 2017, 114:10-16.
[5] MURER N, OLTRA R, VUILLEMIN B, et al. Numerical modelling of the galvanic coupling in aluminium alloys:A discussion on the application of local probe techniques[J]. Corrosion Science, 2010, 52(1):130-139.
[6] 陈跃良, 王哲夫, 卞贵学, 等. 不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系[J]. 航空学报, 2017, 38(3):260-268. CHEN Y L, WANG Z F, BIAN G X, et al. Equivalent conversion of galvanic corrosion of typical aluminum-titanium alloy in NaCl solution with different concentrations[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):260-268(in Chinese).
[7] 张勇, 陈跃良, 王晨光. 模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究[J]. 材料导报, 2016, 30(10):152-155. ZHANG Y, CHEN Y L, WANG C G. Study on galvanic corrosion of aluminum alloy related joints in simulated coastal wet atmospheric[J]. Materials Review, 2016, 30(10):152-155(in Chinese).
[8] 潘大伟, 闫永贵, 高心心, 等. 高强钢与典型管系材料B10和TA2之间的电偶腐蚀及其电绝缘[J]. 腐蚀与防护, 2017, 38(8):589-592. PAN D W, YAN Y G, GAO X X, et al. Galvanic corrosion and electrical insulation between high strength steel and typical piping material B10 and TA2[J]. Corrosion & Protection, 2017, 38(8):589-592(in Chinese).
[9] 聂凯斌, 闫爱军, 姚瑶, 等. 不锈钢包钢在红壤中的电偶腐蚀行为[J]. 腐蚀与防护, 2016, 37(8):639-643. NIE K B, YAN A J, YAO Y, et al. Galvanic corrosion behavior of stainless steel clad steel in red soil[J]. Corrosion & Protection, 2016, 37(8):639-643(in Chinese).
[10] 姚希, 蔡超, 李劲风, 等. 5383铝合金与907钢和铝青铜早期电偶腐蚀的平面分布[J]. 腐蚀科学与防护技术, 2015, 27(5):419-424. YAO X, CAI C, LI J F, et al. Early stage galvanic corrosion of 5383 Al alloy coupled with 907 steel and aluminum bronze in 3.5%NaCl solution[J]. Corrosion Science and Protection Technology, 2015, 27(5):419-424(in Chinese).
[11] 王佳. 液膜形态在大气腐蚀中的作用[M].北京:化学工业出版社, 2017:13-14. WANG J. The role of liquid film pattern in atmospheric corrosion[M]. Beijing:Chemical Industry Press, 2017:13-14(in Chinese).
[12] 王晨光, 陈跃良, 张勇, 等. 7B04铝合金在模拟海洋大气环境下的腐蚀行为[J]. 航空材料学报, 2017, 37(1):59-64. WANG C G, CHEN Y L, ZHANG Y, et al. Corrosion behavior of 7B04 Al-alloy in simulated marine atmospheric environment[J]. Journal of Aeronautical Materials, 2017, 37(1):59-64(in Chinese).
[13] 张艾艾, 何晶靖, 刘天娇, 等. 5A06铝镁合金海水腐蚀电化学特性[J]. 航空学报, 2015, 36(9):3147-3154. ZHANG A A, HE J J, LIU T J, et al. Electrochemical features of corrosion of 5A06 Al-Mg alloy in seawater[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3147-3154(in Chinese).
[14] CHENG Y L, ZHANG Z, CAO F H, et al. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers[J]. Corrosion Science, 2004, 46(7):1649-1667.
[15] PAN C, LV W, WANG Z, et al. Atmospheric corrosion of copper exposed in a simulated coastal-industrial atmosphere[J]. Journal of Materials Science & Technology, 2017, 33(6):587-595.
[16] HUANG H, PAN Z, GUO X, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corrosion Science, 2013, 75:100-105.
[17] HUANG H, DONG Z, CHEN Z, et al. The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer[J]. Corrosion Science, 2011, 53(4):1230-1236.
[18] HUANG H, GUO X, ZHANG G, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer[J]. Corrosion Science, 2011, 53(5):1700-1707.
[19] 李晓刚, 董超芳, 肖葵, 等.金属大气腐蚀初期行为与机理[M]. 北京:科学出版社, 2009:119-136. LI X G, DONG C F, XIAO K, et al. Initial behavior and mechanism of atmospheric corrosion of metals[M]. Beijing:Science Press, 2009:119-136(in Chinese).
[20] 陈跃良, 王晨光, 张勇, 等. 钛-钢螺栓搭接件涂层腐蚀失效分析及影响[J]. 航空学报, 2016, 37(11):3528-3534. CHEN Y L, WANG C G, ZHANG Y, et al. Coating corrosion failure analysis and influence of titanium-steel bolted lap joints[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3528-3534(in Chinese).
[21] 曹楚南. 腐蚀电化学原理[M]. 3版. 北京:化学工业出版社, 2008:105-112. CAO C N. Principles of electrochemistry of corrosion[M]. 3rd ed. Beijing:Chemical Industry Press, 2008:105-112(in Chinese).