材料工程与机械制造

高速切削过程材料变形的应变率研究

  • 张克国 ,
  • 刘勇 ,
  • 王延刚
展开
  • 山东大学(威海) 机电与信息工程学院, 威海 264209

收稿日期: 2017-09-20

  修回日期: 2017-12-25

  网络出版日期: 2017-12-04

基金资助

国家自然科学基金(51775314);中国博士后科学基金(2016M602136);山东大学(威海)青年学者未来计划(2015WHWLJH03)

Strain rate on material deformation in high speed metal cutting process

  • ZHANG Keguo ,
  • LIU Yong ,
  • WANG Yan'gang
Expand
  • School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China

Received date: 2017-09-20

  Revised date: 2017-12-25

  Online published: 2017-12-04

Supported by

National Natural Science Foundation of China (51775314);China Postdoctoral Science Foundation (2016M602136);Shandong University (Weihai) Young Scholars' Future Plan (2015WHWLJH03)

摘要

高速切削因众多优点被广泛研究,然而切削速度快这一特点也限制了对切削过程的认识。为了研究切削过程各类物理参量的变化规律,进而应用到工程实际,提出了从流动的角度去认识切削过程的思路。分析了从材料流动观点研究应变率的依据,提出了一种基于网格测量的应变率计算方法,获得了切削过程应变率的分布,并与计算机模拟计算结果进行了对比分析,结果表明前刀面上的应变率受前刀面摩擦的影响,越靠近前刀面应变率越大,中心剪切面上应变率在剪切面方向上最大,且剪切面两端(刀尖与自由表面处)数值最大;从流动的观点研究应变率的分布,可实现较为粗糙的应变率定量研究。

本文引用格式

张克国 , 刘勇 , 王延刚 . 高速切削过程材料变形的应变率研究[J]. 航空学报, 2018 , 39(3) : 421757 -421757 . DOI: 10.7527/S1000-6893.2017.21757

Abstract

High-speed metal cutting has been widely studied around the world for its high efficiency and quality. However, a quantitative study on many physical parameters of the cutting is still difficult when the cutting speed is high. By investigating the feasibility of studying the strain rate from the perspective of material flow, a method for strain rate calculation is proposed based on mesh measurement. The distribution of strain rate of the metal in the cutting process is obtained, and the data obtained from calculation are compared with those from measurement. The results show that the strain rate on the rake face will be affected by the friction between the chip and the tool. The nearer the distance between the chip layer and the tool rake face, the greater the strain rate will be. The strain rate in the central shear plane is much larger than that in other areas along the shear plane direction, with the strain rate in the two ends being the greatest. The quantitative study physical parameters of high-speed cutting can thus be obtained by using this method from the perspective of material flow.

参考文献

[1] 宋玉泉, 管志平, 李志刚, 等. 应变速率敏感性指数的理论和测量规范[J]. 中国科学E:技术科学, 2007, 37:1363-1382. SONG Y Q, GUAN Z P, LI Z G, et al. Theoretical and measurement specifications for strain rate sensitivity indices[J]. Chinese Science E:Technical Science, 2007, 37:1363-1382(in Chinese).
[2] 郑坚, 孙成友. 关于材料的应变率敏感效应[J]. 力学与实践, 1996, 18(3):18-27. ZHENG J, SUN C Y. Strain rate effect about material[J]. Mechanics and Practice, 1996, 18(3):18-27(in Chinese).
[3] CAMPBELL J D, FERGUSON W G. The temperature and strain-rate dependence of the shear strength of mild steel[J]. Philosophical Magazine, 1970, 81(169):63-82.
[4] LI C H. A pressure-shear experiment for studying the dynamic plastic response of metals at shear strain rate of 105 s-1[D]. Providence:Brown University, 1982:173-175.
[5] LEE W S, SUE W C, LIN C F. The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy[J]. Journal of Materials Processing Technology, 2000, 100(1-3):116-122.
[6] SHAW M C. Chip formation in the machining of hardened steel[J]. CIRP Annals-Manufacturing Technology, 1993, 42(1):29-33.
[7] KWON K B, CHO D W, LEE S J. A fluid dynamic analysis model of the ultra-precision cutting mechanism[J]. Annals of the ClRP, 1999, 48(1):43-46.
[8] KAZBAN R V. Fluid mechanics approach to machining at high speeds:Part I:Justification of potential flow models[J]. Machining Science and Technology, 2007, 11(4):475-489.
[9] KAZBAN R V. Fluid mechanics approach to machining at high speeds:Part Ⅱ:A potential flow model[J]. Machining Science and Technology, 2007, 11(4):491-514.
[10] 毕雪峰, 刘永贤. 基于流线理论计算正交切削中应变率和应变的方法[J]. 东北大学学报, 2009, 30(8):1185-1188. BI X F, LIU Y X. Calculating strain rate and strain during orthogonal cutting in accordance to streamline theory[J]. Journal of Northeastern University, 2009, 30(8):1185-1188(in Chinese).
[11] EL-ZAHRY R M. On the hydrodynamic characteristics of the secondary shear zone in metal machining with sticking-sliding friction using the boundary layer theory[J]. Wear, 1987, 115(3):349-359.
[12] ASTAKHOV V P. The assessment of cutting tool wear[J]. International Journal of Machine Tools & Manufacture, 2004, 44(6):637-647.
[13] BLUMKE R, MULLER C. Microstructure-A dominating parameter for chip forming during high speed milling[J]. Materialwissenschaft Und Werkstofftechnik, 2015, 33(4):194-199.
[14] FLOM D G, KOMANDURI R, LEE M. High-speed machining of metals[J]. Annual Review of Materials Science,1984, 14(1):231-278.
[15] SUNDARAM N K, GUO Y, CHANDRASEK-AR S. Mesoscale folding, instability, and disruption of laminar flow in metal surface[J]. Physical Review Letters, 2012, 109:106001(1)-106001(5).
[16] OXLEY P L B. Mechanics of machining:An analytical approach to assessing machinability[M]. Chichister:Ellis Horwood, 1989:242-245.
[17] TOUNSI N, VINCENTI J, OTHO A, et al. From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation[J]. International Journal of Machine Tools & Manufacture,2002, 42(12):1373-1383.
[18] ZHANG K G, LIU Z Q, WAN Y, et al. Fluid-like properties of chip flow in high speed metal cutting process[J]. Machining Science and Technology, 2015, 19(1):71-85.
[19] 张克国, 刘战强, 万熠. 基于CFD的高速切削层流模[J]. 航空学报, 2013, 34(3):703-710. ZHANG K G, LIU Z Q, WAN Y. Laminar flow analog for high speed machining based on CFD[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):703-710(in Chinese).
文章导航

/