电子电气工程与控制

空基多雷达航迹抗差关联算法

  • 齐林 ,
  • 刘瑜 ,
  • 任华龙 ,
  • 何友
展开
  • 1. 海军航空大学 信息融合研究所, 烟台 264001;
    2. 海军青岛雷达声呐修理厂, 青岛 266000

收稿日期: 2017-08-24

  修回日期: 2018-01-25

  网络出版日期: 2017-12-04

基金资助

国家自然科学基金(61471383,61531020,61471379,61102166)

Air-platform multi-radar anti-bias tracks association algorithm

  • QI Lin ,
  • LIU Yu ,
  • REN Hualong ,
  • HE You
Expand
  • 1. Institute of Information Fusion, Naval Aeronautical University, Yantai 264001, China;
    2. Naval Garage of Radar and Sonar, Qingdao 266000, China

Received date: 2017-08-24

  Revised date: 2018-01-25

  Online published: 2017-12-04

Supported by

National Natural Science Foundation of China (61471383, 61531020, 61471379, 61102166)

摘要

基于高斯随机矢量统计特性,推导出一种适用于探测距离较远、系统误差时变、雷达上报目标不一致等复杂环境的空基多雷达航迹抗差关联算法。分解航迹距离矢量,对消系统误差矢量得出适用于3个及3个以上雷达的航迹抗差关联条件和流程。分别设置了目标密集程度、随机误差和系统误差适应性实验验证算法性能。仿真结果表明所提算法的关联准确性和复杂环境适应性相比现有的基于参照拓扑特征的航迹关联算法(RET算法)和基于距离检测的可信关联算法(confidential算法)有较大幅度的提升。

本文引用格式

齐林 , 刘瑜 , 任华龙 , 何友 . 空基多雷达航迹抗差关联算法[J]. 航空学报, 2018 , 39(3) : 321691 -321691 . DOI: 10.7527/S1000-6893.2017.21691

Abstract

An air-platform multi-radar anti-bias tracks association algorithm is proposed based on the statistical feature of the Gaussian random vector. The algorithm is adaptive to complicated environment such as far detection range, time-varied measurement biases, and different targets reported by different radars. The anti-bias tracks association conditions for three or more radars and the multi-radar anti-bias tracks association flow are proposed based on the difference between bias vectors. Adaptability experiments are established based on three factors including the targets density, random error and sensor bias to validate the performance of the algorithm. Monte Carlo simulations demonstrate that the proposed algorithm can significantly improve the association accuracy and the adaptability to complicated environment compared with the algorithm based on the reference topology feature (RET algorithm) and the confidential algorithm based on bias detection (confidential algorithm).

参考文献

[1] BAR-SHALOM Y, FORTMANN T E. Tracking and data association[M]. Orlando:Academic Press INC., 1988:266-272.
[2] 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:267-308. HE Y, WANG G H, GUAN X. Information fusion theory with applications[M]. Beijing:Publishing House of Electronics Industry, 2010:267-308(in Chinese).
[3] LIN X D, BAR-SHALOM Y, KIRUBARAJAN T. Exact multi-sensor dynamic bias estimation with local tracks[J]. IEEE Transactions on Aerospace & Electronic Systems, 2004, 40(2):576-590.
[4] ZHENG Z W, ZHU Y S. New least squares registration algorithm for data fusion[J]. IEEE Transactions on Aerospace & Electronic Systems, 2004, 40(4):1410-1416.
[5] HE Y, ZHANG J W. New track correlation algorithms in a multi-sensor data fusion system[J]. IEEE Transactions on Aerospace & Electronic Systems, 2006, 42(4):1359-1371.
[6] 何友, 宋强, 熊伟. 基于傅里叶变换的航迹对准关联算法[J]. 航空学报, 2010, 31(2):356-362. HE Y, SONG Q, XIONG W. A track registration-correlation algorithm based on Fourier transform[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):356-362(in Chinese).
[7] 衣晓, 张怀巍, 曹昕莹, 等. 基于区间灰数的分布式多目标航迹关联算法[J]. 航空学报, 2013, 34(2):352-360. YI X, ZHANG H W, CAO X Y, et al. A track association algorithm for distributed multi-target systems based on gray interval numbers[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):352-360(in Chinese).
[8] 石玥, 王钺, 王树刚, 等. 基于目标参照拓扑的模糊航迹关联方法[J]. 国防科技大学学报, 2006, 28(4):105-109. SHI Y, WANG Y, WANG S G, et al. Fuzzy data association based on target topology of reference[J]. Journal of National University of Defence Technology, 2006, 28(4):105-109(in Chinese).
[9] TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4):449-453.
[10] 田威. 复杂环境下多传感器航迹关联与抗差处理[D]. 北京:清华大学, 2014:96-116. TIAN W. Multi-sensor track-to-track association and bias removal in complex environments[D]. Beijing:Tsinghua University, 2014:96-116(in Chinese).
[11] ZHU H Y, HAN S Y. Track-to-track association based on structural similarity in the presence of sensor biases[J]. Journal of Applied Mathematics, 2014(1):1-8.
[12] ZHU H Y, WANG W, WANG C. Robust track-to-track association in the presence of sensor biases and missed detections[J]. Information Fusion, 2016, 27:33-40.
[13] LI Z, CHEN S, LEUNG H, et al. Joint data association, registration, and fusion using EM-KF[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(2):496-507.
[14] ZHU H, LEUNG H, YUEN K. A joint data association, registration, and fusion approach for distributed tracking[J]. Information Sciences, 2015, 324(C):186-196.
[15] MORI S, CHANG K C, CHONG C Y. Tracking performance evaluation-prediction of track purity[C]//Proceeding of SPIE. Bellingham, WA:SPIE, 1989:215-223.
[16] MORI S, CHANG K C, CHONG C Y. Performance prediction of feature-aided track-to-track association[J]. IEEE Transactions on Aerospace & Electronic Systems, 2014, 50(4):2593-2603.
[17] 齐林, 崔亚奇, 熊伟, 等. 基于距离检测的自动识别系统和对海雷达航迹抗差关联算法[J]. 电子与信息学报, 2015, 37(8):1855-1861. QI L, CUI Y Q, XIONG W, et al. Anti-bias association algorithm for automatic identification system and radar based on bias detection[J]. Journal of Electronics & Information Technology, 2015, 37(8):1855-1861(in Chinese).
[18] ZHU H Y, CHEN S. Track fusion in the presence of sensor biases[J]. IET Signal Process, 2014, 8(9):958-967.
[19] ZHU H Y, WANG C. Joint track-to-track association and sensor registration at the track level[J]. Digital Signal Processing, 2015, 41:48-59.
[20] QI L, DONG K, LIU Y, et al. Anti-bias track-to-track association algorithm based on distance detection[J]. IET Radar, Sonar & Navigation, 2017, 11(2):269-276.
[21] 何友, 修建娟, 关欣. 雷达数据处理及应用[M]. 3版. 北京:电子工业出版社, 2013:36-50. HE Y, XIU J J, GUAN X. Radar data processing with applications[M]. 3rd ed. Beijing:Publishing House of Electronics Industry, 2013:36-50(in Chinese).
文章导航

/