综述

DPW Ⅳ~DPW Ⅵ数值模拟技术综述特约

  • 王运涛
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2017-10-31

  修回日期: 2018-01-05

  网络出版日期: 2017-11-29

基金资助

国家重点研究发展计划(2016YFB0200700)

An overview of DPW Ⅳ-DPW Ⅵ numerical simulation technology

  • WANG Yuntao
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-10-31

  Revised date: 2018-01-05

  Online published: 2017-11-29

Supported by

National Key Research and Development Program (2016YFB0200700)

摘要

DPW(Drag Prediction Workshop)系列会议是CFD验证和确认领域最具代表性的国际会议之一。CRM(Common Research Model)代表了现代运输机的典型巡航构型,该模型是AIAA DPW Ⅳ~Ⅵ会议选择的基准研究模型。针对CRM,国际上开展了大量的风洞试验与数值模拟工作,这些工作反映了当前CFD验证与确认研究的最新进展。本文介绍了CRM及开展的风洞试验,概述了DPW Ⅳ~Ⅵ会议的情况,分别从计算网格生成、计算方法与湍流模型、计算结果与试验结果的对比等方面总结了CFD验证与确认工作的进展,以及CRM相关优化设计工作,并给出了进一步开展CFD验证与确认工作的思考与建议。

关键词: CRM; DPW; CFD; 湍流模型; 风洞试验

本文引用格式

王运涛 . DPW Ⅳ~DPW Ⅵ数值模拟技术综述特约[J]. 航空学报, 2018 , 39(4) : 21836 -021836 . DOI: 10.7527/S1000-6893.2017.21836

Abstract

The conference series of Drag Prediction Workshop (DPW) are the most popular international conferences in verification and validation of CFD. The Common Research Model (CRM) is representative of the contemporary transonic commercial transport, and is the reference geometry selected by the DPW Organizing Committee from DPW Ⅳ to DPW Ⅵ. A large number of experiments and numerical simulations have been conducted in the world, reflecting the progress in the fields of CFD verification and validation up to date. This paper is organized as follows: introduces the CRM and related wind tunnel tests, outlines the basic information from DPW Ⅳ to DPW Ⅵ, the progress in the fields of CFD verification and validation is summarized, including numerical grid generation, numerical method and turbulent model, and comparison between numerical results and experimental data, gives a brief description of the optimization works related to the CRM, provides some thoughts and suggestions on CFD verification and validation.

参考文献

[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the First AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the Second AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the Third AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] 闫超, 席柯, 袁武力, 等. DPW系列会议述评与思考[J]. 力学进展, 2011, 41(6):776-784. YAN C, XI K, YUAN W L, et al. Review of the drag prediction workshop series[J]. Advances in Mechanics, 2011, 41(6):776-784(in Chinese).
[5] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[6] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model:AIAA-2010-4218[R]. Reston, VA:AIAA, 2010.
[7] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model in the NASA Langley transonic facility and NASA Ames 11-ft transonic wind tunnel:AIAA-2011-1126[R]. Reston,VA:AIAA, 2011.
[8] RIVERS M B, RUDNIK R, QUEST J. Comparison of the NASA common research model European transonic wind tunnel test data to NASA test data:AIAA-2015-1093[R]. Reston:AIAA,VA, 2015.
[9] UENO M, KOHZAI T, KOGA S, et al. 80% scaled NASA common research model wind tunnel test of JAXA at relatively low Reynolds number:AIAA-2013-0493[R]. Reston,VA:AIAA, 2013.
[10] CARTIERI A, HUE D, CHANZY Q, et al. Experimental investigations on the common research model at ONERA-S1MA-Comparison with DPW numerical results:AIAA-2017-0964[R]. Reston,VA:AIAA, 2017.
[11] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA CFD Drag Prediction Workshop:AIAA-2010-4547[R]. Reston,VA:AIAA, 2010.
[12] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[13] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop:AIAA-2013-0046[R]. Reston,VA:AIAA, 2013.
[14] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[15] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM case 2 to 5:AIAA-2017-1208[R]. Reston,VA:AIAA, 2017.
[16] KEYE S, MAVRIPLIS D. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:Case 5(coupled aero-structural simulation):AIAA-2017-1207[R]. Reston,VA:AIAA, 2017.
[17] RUMSEY C L, MORRISON J H, BIEDRON R T, et al. CFD variability for a civil transport aircraft near buffet-onset conditions:NASA/TM-2003-212149[R]. Washington, D.C.:NASA, 2003.
[18] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[19] VASSBERG J, DEHAAN M, SCLAFANI T. Grid generation requirements for accurate drag predictions based on OVERFLOW calculations:AIAA-2003-4124[R]. Reston, VA:AIAA, 2003.
[20] TINOCO E N, WINKLER C, MANI M, et al. Structured and unstructured solvers for the 3rd CFD Drag Prediction Workshop:AIAA-2007-0255[R]. Reston, VA:AIAA, 2007.
[21] MAVRIPLIS D J. Results from the 3rd Drag Prediction Workshop using the NSU3D unstructured mesh solver:AIAA-2007-0256[R]. Reston, VA:AIAA, 2007.
[22] SCLAFANI A J, VASSBERG J C, HARRISON N A, et al. Drag predictions for the DLR-F6 wing/body and DPW wings using CFL3D and OVERFLOW on an overset mesh:AIAA-2007-0257[R]. Reston, VA:AIAA, 2007.
[23] BRODERSEN O, EISFELD B, RADDATZ J, et al. DLR results from the Third AIAA CFD Drag Prediction Workshop:AIAA-2007-0259[R]. Reston, VA:AIAA, 2007.
[24] SCLAFANI A J, VASSBERG J C, RUMSEY C, et al. Drag prediction for the NASA CRM wing/body/tail using CFL3D and OVERFLOW on an overset Mesh:AIAA-2010-4219[R]. Reston, VA:AIAA, 2010.
[25] TEMMERMAN L, HIRSCH C. Simulations of the CRM configuration on unstructured hexahedral grids:Lessons learned from the DPW-4 Workshop:AIAA-2010-4670[R]. Reston, VA:AIAA, 2010.
[26] VASSBERG J C. A unified baseline grid about the common research model wing-body for the Fifth AIAA CFD Drag Prediction Workshop:AIAA-2011-3508[R]. Reston, VA:AIAA, 2011.
[27] MARTINEAU D, STOKES S, MUNDAY S, et al. Anisotropic hybrid mesh generation for industrial RANS applications:AIAA-2006-0534[R]. Reston, VA:AIAA, 2006.
[28] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[29] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[30] 王运涛, 孙岩, 王光学, 等. 高阶精度方法下的湍流生成项对跨声速流动数值模拟的影响研究[J].空气动力学学报,2015, 33(1):25-30. WANG Y T, SUN Y, WANG G X, et al. Numerical study of the effect of turbulent production terms on the simulation of transonic flows with high-order numerical method[J]. Acta Aerodynamica Sinica, 2015, 33(1):25-30(in Chinese).
[31] 王运涛, 孙岩, 王光学, 等. 湍流模型离散精度对数值模拟影响的计算分析[J]. 航空学报, 2015, 36(5):1453-1459. WANG Y T, SUN Y, WANG G X, et al. Numerical study of the effect of turbulent production terms on the simulation of transonic flows with high-order numerical method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1453-1459(in Chinese)
[32] 王运涛, 孙岩, 李松, 等. 高阶精度方法下的湍流生成项对低速流动数值模拟的影响研究[J]. 空气动力学学报, 2015,33(3):325-329. WANG Y T, SUN Y, LI S, et al. Numerical analysis of the effect of turbulent production terms in low-speed numerical simulation[J]. Acta Aerodynamica Sinica, 2015,33(3):325-329(in Chinese)
[33] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[34] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU_SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[35] 王运涛, 孟德虹, 孙岩, 等. DLR-F6/FX2B翼身组合体构型高阶精度数值模拟[J]. 航空学报, 2016, 37(2):484-490. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of DLR-F6/FX2B wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):484-490(in Chinese).
[36] 王运涛, 孙岩, 孟德虹, 等. CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报, 2016, 37(12):3692-3697. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing/body/horizontal tail model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3692-3697(in Chinese).
[37] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese).
[38] 王运涛, 孟德虹, 孙岩, 等. CRM-WB风洞模型高阶精度数值模拟[J]. 航空学报, 2018, 39(4):121642. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of CRM-WB wind tunnel model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121642(in Chinese).
[39] ROY C J, RUMSEY C, TINOCO E N. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:Case 1 code verification[R]. Reston,VA:AIAA, 2017.
[40] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston,VA:AIAA, 1992.
[41] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[42] ANTON P S, JOHNSON D J, BLOCK M, et al. Wind tunnle and propulsion test facilities:Supporting analyses toan assessment of NASA's capabilities to serve national needs:RAND_TR134[R]. California:RAND, 2004.
[43] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21:252-263.
[44] YAMAMOTO K, TANAKA K, MURAYAMA M. Effect of a nonlinear constitutive relation for turbulence modeling on predicting flow separation at wing-body juncture of transonic commercial aircraft:AIAA-2012-2895[R]. Reston,VA:AIAA, 2012.
[45] OBERKAMPF W L, TRUCANOB T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38:209-272.
[46] DAVID H U E. CFD investigation on the DPW-5 configuration with measured experimental wing twist using the elsA slover and the far-field approach:AIAA-2013-2508[R]. Reston,VA:AIAA, 2013.
[47] KEYE S, TOJITI V, EISFELD B, et al. Investigation of fluid-structure-coupling and turbulence model effects on the DLR results of the Fifth AIAA CFD Drag Prediction Workshop:AIAA-2013-2509[R]. Reston,VA:AIAA, 2013.
[48] KEYE S, BRODERSEN O, RIVERS M B, et al. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4):1323-1330.
[49] MORRISON J H. Statistical analysis of the fifth drag prediction workshop computational fluid dynamics solutions[J]. Journal of Aircraft, 2014, 51(4):1214-1222.
[50] DERLAGA J M, MORRISONY J H. Statistical analysis of CFD solutions from the 6th AIAA CFD drag prediction workshop:AIAA-2017-1209[R]. Reston,VA:AIAA, 2017.
[51] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston,VA:AIAA, 2012.
[52] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston,VA:AIAA, 2012.
[53] ZILLIAC G G, PULLIAM T H, RIVERS M B, et al. A comparison of the measured and computed skin friction distribution on the common research model:AIAA-2011-1129[R]. Reston,VA:AIAA, 2011.
[54] 王运涛, 孙岩, 孟德虹, 等. 包含支撑装置和机翼变形的CRM-WB模型气动特性数值模拟[J]. 航空学报, 2017, 38(12):121202. WANG Y T, SUN Y, MENG D H, et al. Numerical simulation of aerodynamic characteristics of CRM-WB model with support system and wing deformation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121202(in Chinese).
[55] 王运涛, 王光学, 张玉伦. 采用TRIP2.0软件计算DLR-F6构型的阻力[J]. 空气动力学学报, 2009, 27(1):108-111. WANG Y T, WANG G X, ZHANG Y L. Drag prediction of DLR-F6 configuration with TRIP2.0 software[J]. Acta Aerodynamica Sinica, 2009, 27(1):108-111(in Chinese).
[56] 王运涛, 王光学, 张玉伦. DPW Ⅲ机翼和翼身组合体构型数值模拟[J]. 空气动力学学报, 2011, 29(3):264-269. WANG Y T, WANG G X, ZHANG Y L. Numerical simulation of DPW Ⅲ wing and wing-body configurations[J]. Acta Aerodynamica Sinica, 2011, 29(3):264-269(in Chinese).
[57] OWENS L R, WAHLS R A, RIVERS S M. Off-design Reynolds number effects for a supersonic transport[J]. Journal of Aircraft, 2005, 42(6):1427-1441.
[58] KEYE S, RUDNIK R. Aero-elastic simulation of DLR's F6 transport aircraft configuration and comparison to experimental data:AIAA-2009-0580[R]. Reston, VA:AIAA, 2009.
[59] MOUTON S, SANT Y L, LYONNET M. Prediction of the aerodynamic effect of model deformation during transonic wind tunnel tests[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1-3):44-56.
[60] HEEG J, CHWALOWSKI P, FLORANCE J P, et al. Overview of the aeroelastic predication workshop:AIAA-2013-0783[R]. Reston, VA:AIAA, 2013.
[61] LYU Z J, KENWAY G K W, MARTINS J R R A. RANS-based aerodynamic shape optimization investigations of the common research model wing:AIAA-2014-0567[R]. Reston, VA:AIAA, 2014.
[62] KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization of the CRM configuration including buffet-onset conditions:AIAA-2016-1294[R]. Reston, VA:AIAA, 2016.
[63] 陈颂, 白俊强, 史亚云, 等. 民用客机机翼/机身/平尾构型气动外形优化设计[J]. 航空学报, 2015, 36(10):3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese).
[64] 刘峰博, 郝海兵, 李典, 等. 离散伴随方法在气动优化设计中的应用[J]. 航空计算技术, 2017, 42(2):33-40. LIU F B, HAO H B, LI D, et al. Application of discrete adjoint method in aerodynamic shape optimization design[J]. Aeronautical Computing Technique, 2017, 42(2):33-40(in Chinese).
[65] LIEM R P, KENWAY G K W, MARTINS J R R A. Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration:AIAA-2012-5706[R]. Reston, VA:AIAA, 2012.
[66] GAETAN K W, KENWAY G K W, MARTINS J R R A. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration[J]. Journal of Aircraft, 2014, 51(1):144-160.
文章导航

/