固体力学与飞行器总体设计

基于偏导数的全局灵敏度指标的高效求解方法

  • 冯凯旋 ,
  • 吕震宙 ,
  • 蒋献
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国飞行试验研究院 飞机所, 西安 710089

收稿日期: 2017-08-28

  修回日期: 2017-11-17

  网络出版日期: 2017-11-17

基金资助

国家自然科学基金(51475370,51775439)

Efficient algorithm for estimating derivative-based global sensitivity index

  • FENG Kaixuan ,
  • LYU Zhenzhou ,
  • JIANG Xian
Expand
  • 1. School of Aeronautics, Northwestern Ploytechnical University, Xi'an 710072, China;
    2. Aircraft Flight Test Technology Institute, Chinese Flight Test Establishment, Xi'an 710089, China

Received date: 2017-08-28

  Revised date: 2017-11-17

  Online published: 2017-11-17

Supported by

National Natural Science Foundation of China (51475370,51775439)

摘要

在全局灵敏度分析领域,基于偏导数的全局灵敏度指标由于其优良的特性得到了广泛的关注。针对目前求解基于偏导数的全局灵敏度指标计算效率低的问题,提出了一种高效的求解方法。该方法利用乘法降维近似地将响应函数展开为连乘积的形式,从而将求解偏导数全局灵敏度的高维积分问题转化为一维积分的连乘积,在保证计算精度的前提下大大降低了求解基于偏导数的全局灵敏度指标的计算量。在求解特定点的偏导数时,采用了复数步长方法,提高了计算精度。最后,通过算例验证了所提方法的准确性和高效性。

本文引用格式

冯凯旋 , 吕震宙 , 蒋献 . 基于偏导数的全局灵敏度指标的高效求解方法[J]. 航空学报, 2018 , 39(3) : 221699 -221699 . DOI: 10.7527/S1000-6893.2017.21699

Abstract

In the field of global sensitivity analysis, the derivative-based global sensitivity index attracts increasing attention because of its good properties. At present, the existing computing methods in estimating the derivative-based global sensitivity index have deficiencies of poor computational efficiency, thus, an efficient computational algorithm is developed in this article. In the proposed method, the multiplication dimension reduction is adopted to express the response function as the product-form. Then, the high-dimensional integration for estimating the derivative-based global sensitivity index can be transformed into the product of some one-dimensional integrations. Therefore, the proposed computational method can reduce the calculation cost for computing the derivative-based global sensitivity index dramatically, while the computational precision is kept. The complex step method is used to estimate the derivatives at specific points, and this method can improve the calculation precision. In the end, the test examples are adopted in order to demonstrate the accuracy and efficiency of the proposed method.

参考文献

[1] 阮文斌, 刘洋, 熊磊. 基于全局灵敏度分析的侧向气动导数不确定性对侧向飞行载荷的影响[J]. 航空学报, 2016, 37(6):1827-1832. RUAN W B, LIU Y, XIONG L. Influence of side aerodynamic derivate uncertainty on side flight load based on global sensitivity analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1827-1832(in Chinese).
[2] LAMBONI M, IOOSS B, POPELIN A L, et al. Derivative-based global sensitivity measures:General links with Sobol's indices and numerical tests[J]. Mathematics and Computers in Simulation, 2013, 87:45-54.
[3] PATELLI E, PRADLWARTER H. Monte Carlo gradient estimation in high dimensions[J]. International Journal for Numerical Methods in Engineering, 2010, 81:172-188.
[4] SOBOL I M, KUCHERENKO S. Derivative global sensitivity measures and their link with global sensitivity indices[J]. Mathematics and Computers in Simulation, 2009, 79(10):3009-3017.
[5] MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technimetrics, 1991, 33(2):161-174.
[6] CAMPOLONGO F, CARIBONI J, SALTELLI A. An effective screening design for sensitivity analysis of large models[J]. Environment Model Software, 2007, 22(10):1509-1518.
[7] SOBOL I M. Sensitivity analysis for non-linear mathematical, methods[J]. Mathematical Modelling and Computational Experiment, 1993, 1:407-414.
[8] HOMMA T, SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models[J]. Relia-bility Engineering and System Safety, 1996, 52(1):1-17.
[9] 巩祥瑞, 吕震宙, 左键巍. 两种基于方差的全局灵敏度分析W指标改进算法[J]. 航空学报, 2016, 37(6):1888-1898. GONG X R, LU Z Z, ZUO J W. Two importance methods for variance-based global sensitivity analysis' W-indices[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1888-1898(in Chinese).
[10] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering and System Safety, 2007, 92(6):771-784.
[11] LI L Y, LU Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution[J]. Structural Safety, 2012, 38:40-47.
[12] WEI X B, WEI Y J, HUANG Q X. Experimental investigation of critical ventilating coefficient of ventilated supercavity in water tunnel[J]. Journal of Harbin Institute of Technology, 2007, 39(5):797-799.
[13] WEI P F, LU Z Z, HAO W R, et al. Efficient sampling methods for global reliability sensitivity analysis[J]. Computer Physics Communications, 2012,183(8):1728-1743.
[14] BREIMAN L. Random forest[J]. Machine Learning, 2001, 45(1):5-32.
[15] BOBKOV S G. Isoperimetric and analytic inequalities for Log-concave probability measures[J]. The Annals of Probability, 1999, 27(4):1903-1921.
[16] MARTINS J, KROO I, ALONSO J. An automated method for sensitivity analysis using complex variables:AIAA-2000-0689[R]. Reston, VA:AIAA, 2000.
[17] YUN W Y, LU Z Z, ZHANG K C, et al. An efficient sampling method for variance-based sensitivity analysis[J]. Structural Safety, 2017, 65:74-83.
[18] ROCQUIGNY E, DEVICTOR N, TARANTOLA S. Uncertainty in industrial practice[M]. Hoboken:Wiley, 2008.
[19] JIANG C, LI W X, HAN X, et al. Structural reliability analysis based on random distributions with interval parameters[J]. Computers and Structures, 2011, 89(23-24):2292-2302.
[20] 魏鹏飞. 结构系统可靠性及灵敏度分析研究[D]. 西安:西北工业大学, 2014:79-81. WEI P F. Research on the reliability and sensitivity analysis of structure systems[D]. Xi'an:Northwestern Polytechnical University, 2014:79-81(in Chinese).
文章导航

/