流体力学与飞行力学

自适应笛卡尔网格超声速黏性流动数值模拟

  • 唐志共 ,
  • 陈浩 ,
  • 毕林 ,
  • 袁先旭
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2017-08-28

  修回日期: 2017-11-17

  网络出版日期: 2017-11-17

基金资助

国家自然科学基金(11372341,91216203)

Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid

  • TANG Zhigong ,
  • CHEN Hao ,
  • BI Lin ,
  • YUAN Xianxu
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-08-28

  Revised date: 2017-11-17

  Online published: 2017-11-17

Supported by

National Natural Science Foundation of China (11372341, 91216203)

摘要

复杂外形/流场的高质量网格的生成往往需要占用大量人力资源,而自适应笛卡尔网格方法能够自动化生成高质量网格,具有很好的工程实用价值和应用前景。基于笛卡尔网格方法,采用叉树数据结构进行数据的存储和访问,分别从几何特征和流场解特征出发进行网格的自适应加密和粗化,发展了一种二维情况下自动、高效的自适应笛卡尔网格生成方法。从浸入边界方法出发,结合虚拟镜像对称方法和曲率修正技术进行黏性物面边界条件的处理,同时建立了多值点问题的处理技术,发展了一种在笛卡尔网格下可有效模拟黏性物面边界条件的方法。针对自适应笛卡尔网格非均匀的特点,发展了悬挂网格的处理方法,并构建了适用于自适应笛卡尔网格的黏性数值求解器。通过典型算例的考核,验证了所发展的自适应笛卡尔网格生成技术和构建的数值求解器具有较高的精度和可靠性。

本文引用格式

唐志共 , 陈浩 , 毕林 , 袁先旭 . 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018 , 39(5) : 121697 -121697 . DOI: 10.7527/S1000-6893.2017.21697

Abstract

In comparison with the structured and the unstructured grids, the adaptive Cartesian grid can generate grid of high quality automatically, and has the application prospect in reducing manual labor. An adaptive Cartesian grid generation methodology with automation and efficiency under the two-dimensional condition is developed in this paper. The quadtree data structure is used for grids storage, making it trivial to accomplish grid adaptation. The grids are coarsened or refined based on the geometric features and solution for the flow field. The curvature corrected symmetry technique combined with the immersed boundary method is adopted to deal with the viscous boundary condition, achieving good results in computation of the viscous flow. A method for handling the multi-valued grids near thin surfaces and sharp corners is also developed. Considering the adaptive Cartesian grid is non-uniform, a processing method is developed for the hang-grid problem. Meanwhile, a viscous numerical solver applicable to the adaptive Cartesian grid is constructed. Typical simulation examples show the feasibility and reliability of the adaptive Cartesian grid generation methodology and the numerical solver.

参考文献

[1] MAVRIPLIS D J. An advancing front Delaunay triangulation algorithm designed for robustness[J]. Journal of Computational Physics, 1995, 117(1):90-101.
[2] ITO Y, NAKAHASHI K. Unstructured hybrid grid generation baseds on isotropic tetrahedral grids:AIAA-2002-0861[R]. Reston, VA:AIAA, 2002.
[3] KALLINDERIS Y, WARD S. Prismatic grid generation with an efficient algebraic method for aircraft configuration:AIAA-1992-2721[R]. Reston, VA:AIAA, 1992.
[4] DE ZEEUW D L. A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations[D]. Michigan:University of Michigan, 1993.
[5] MURAT B. Quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations[D]. Michigan:University of Michigan, 2005.
[6] ROBERT R A, VLADIMIR I K. Direct simulation Monte Carlo with octree Cartesian mesh[J]. AIAA Journal, 2012, 20(2):25-28.
[7] FUJIMOTO K, FUJⅡ K, WANG Z J. Improvements in the reliability and efficiency of body-fitted Cartesian grid method:AIAA-2009-1173[R]. Reston, VA:AIAA, 2009.
[8] UDAYKUMAR H S. Multiphase dynamics in arbitrary geometries on fixed Cartesian grids[J]. Journal of Computational Physics, 1997, 137(2):366-405.
[9] UDAYKUMAR H S. A sharp interface Cartesian grid method for simulating flow with complex moving boundaries[J]. Journal of Computational Physics, 2001, 174(1):345-380.
[10] MARSHALL D D. Extending the functionalities of Cartesian grid solvers:Viscous effects modeling and MPI parallelization[D]. Georgia:Georgia Institute of Technology, 2002.
[11] FORRER H, JELTSCH R. A higher order boundary treatment for Cartesian-grid method[J]. Journal of Computational Physics, 1998, 140(2):259-277.
[12] JAE-DOO L, RUFFIN S M. Development of a turbulent wall-function based viscous Cartesian-grid methodology:AIAA-2007-1326[R]. Reston, VA:AIAA, 2007.
[13] JAE-DOO L. Development of an efficient viscous approach in a Cartesian grid framework and application to rotor-fuselage interaction[D]. Georgia:Georgia Institute of Technology, 2006.
[14] DE ZEEUW D L. A wave-model-based refinement criterion for adaptive-grid computation of compressible flow:AIAA-1992-0332[R]. Reston, VA:AIAA, 1992.
[15] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. A non-oscillatory, containing no free parameters and dissipative scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese).
[16] VAN LEER B. Flux vector splitting for Euler equations[J]. Lecture Notes in Physics, 1982:507-512.
[17] ENGQUIST B, MAJDA A. Absorbing boundary conditions for the numerical simulation of waves[J]. Mathematics of Computation, 1977, 31:629-651.
[18] GUSIAFSSON B, SANDSTROM A. Incompletely parabolic problems in fluid dynamics[J]. SIAM Journal on Applied Mathematics, 1978, 35:343-357.
[19] DADONE A, GROSSMAN B. An immersed body methodology for inviscid flows on Cartesian grids:AIAA-2002-1059[R]. Reston, VA:AIAA, 2002.
[20] DADONE A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations[J]. AIAA Journal, 1994, 32(2):285-293.
[21] FORRER H, BERGER M. Flow simulations on Cartesian grids involving complex moving geometries[C]//Proceedings of 6th International Conference on Hyperbolic Problems, 1998.
[22] BASHKIN V A, VAGANOV A V, EGOROV I V, et al. Comparison of calculated and experimental data on supersonic flow past a circular cylinder[J]. Fluid Dynamics, 2002, 37(3):473-483.
[23] MUNIKRISHNA N, LIOU M S. A Cartesian based body-fitted adaptive grid method for compressible viscous flows[R]. Reston, VA:AIAA, 2009.
[24] 鲁阳, 邹建锋, 郑耀. 基于非结构网格的TTGC有限元格式的实现及在超声速流动中的应用[J]. 计算力学学报, 2013, 30(5):712-722. LU Y, ZOU J F, ZHENG Y. Unstructured grids based on TTGC finite element scheme and its application to supersonic flows[J]. Chinese Journal of Computational Mechanics, 2013, 30(5):712-722(in Chinese).
[25] BOIRON O, CHIAVASSA G, DONAT R. A high-resolution penalization method for large Mach number flows in the presence of obstacles[J]. Computers & Fluids, 2009, 38(3):703-714.
[26] RUDY D H, THOMAS J L, KUMAR A. Computation of laminar viscous-inviscid interactions in high-speed internal flows[J]. AIAA Journal, 1991, 29(7):1108-1113.
文章导航

/