研究近空间高升阻比构型高超声速飞行器面临的复杂稳定性问题,对其机动飞行安全和操控具有重要意义。为此,通过静、动态风洞试验和数值模拟,开展了类HTV-2飞行器布局典型马赫数和迎角下,滚转方向静稳定性、单自由度和两自由度俯仰/滚转耦合运动动稳定性研究。结果表明:飞行器滚转方向为静稳定;自由振动的滚转单自由度运动为衰减振动曲线,动导数为负值,表现为动稳定;强迫俯仰/自由滚转两自由度耦合运动情况下,由于惯性力矩和非对称滚转力矩共同作用,导致滚转出现振幅周期性变化的极限环运动,甚至失稳发散。
It is of great significance for flight safety and maneuvering capability to study the complex stability problem of near space hypersonic vehicles with high ratio of lift to drag. Therefore, through static and dynamic wind tunnel tests and numerical simulation, a study on the static stability in the rolling direction and the dynamic stability of the single-degree-of-freedom and the coupled two-degrees-of-freedom pitching/rolling motion is carried out for the HTV-2 like vehicle under the typical Mach number and angle of attack. The result shows that the vehicle is in static stability in the rolling direction, and the motion of free vibration of single rolling freedom shows an attenuation vibration curve which meets the fact that the vehicle is dynamically stable with negative dynamic derivative in the rolling direction. But under the condition of forced-pitch/free-roll coupled motion with two degrees of freedom, the rolling direction may come into the limit cycle motion with periodical changing amplitude and even lose its stability due to interaction of inertia moment and asymmetric rolling moment.
[1] 常中东. 高超声速滑翔式飞行器气动性能分析与评估[D]. 长沙:国防科学技术大学, 2011:1-2. CHANG Z D. Analysis and evaluation on aerodynamic performance for hypersonic glide vehicle[D]. Changsha:National University of Science and Technology, 2011:1-2(in Chinese).
[2] 叶友达. 近空间高速飞行器气动特性研究与布局优化设计[J]. 力学进展, 2009, 39(6):683-694. YE Y D. Study on aerodynamic characteristics and design optimization for high speed near space vehicles[J]. Advances in Mechanics, 2009, 39(6):683-694(in Chinese).
[3] 叶友达. 高超声速空气动力学研究进展与趋势[J]. 科学通报, 2015, 60:1095-1103. YE Y D. Advances and prospects in hypersonic aerodynamics[J]. Chinese Science Bulletin, 2015, 60:1095-1103(in Chinese).
[4] 刘伟, 杨小亮, 赵云飞. 高超声速飞行器加速度导数数值模拟[J]. 空气动力学学报, 2010, 28(4):426-429. LIU W, YANG X L, ZHAO Y F. Numerical simulation of acceleration derivative of hypersonic aircraft[J]. Acta Aerodynamica Sinica,2010, 28(4):426-429(in Chinese).
[5] 刘绪, 刘伟, 柴振霞, 等. 飞行器动态稳定性参数计算方法研究进展[J]. 航空学报, 2016, 37(8):2348-2369. LIU X, LIU W, CHAI Z X, et al. Research progress of numerical method of dynamic stability derivatives of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2348-2369(in Chinese).
[6] 黄宇, 阎超, 席柯, 等. 基于数值虚拟飞行技术的飞行器动态特性分析[J]. 航空学报, 2016, 37(8):2525-2538. HUANG Y, YAN C, XI K, et al. Analysis of flying vehicle's dynamic characteristics based on numerical virtual flight technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2525-2538(in Chinese).
[7] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(10):376-417. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(10):376-417(in Chinese).
[8] 田浩. 三维可压缩流动的非定常分离及飞行器运动/流动耦合的非线性动态稳定性[D]. 绵阳:中国空气动力研究与发展中心, 2015:7-9. TIAN H. Research on three-dimensional compressible unsteady flow separation and nonlinear dynamic stability for the coupling between the aircraft's motion and fluid flow[D]. Mianyang:China Aerodynamics Research and Development Center,2015:7-9(in Chinese).
[9] RICHARD E D. Coupling dynamics in aircraft:A historical perspective:NASA SP-532[R]. Washington, D.C.:NASA, 1997.
[10] 赵俊波, 沈清, 张鲁民, 等. 一种高升力高超声速飞行器气动布局设计概念构想[J]. 战术导弹技术, 2011(2):11-14. ZHAO J B, SHEN Q, ZHANG L M, et al. An aerodynamic configuration design concept for high lift hypersonic vehicle[J]. Tactical Missile Technology, 2011(2):11-14(in Chinese).
[11] 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5):1259-1265. HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5):1259-1265(in Chinese).
[12] 高清, 赵俊波, 李潜. 类HTV-2横侧向稳定性研究[J].宇航学报, 2014, 35(6):657-662. GAO Q, ZHAO J B, LI Q. Study on lateral-directional stability of HTV-2 like configuration[J]. Journal of Astronautics, 2014, 35(6):657-662(in Chinese).
[13] BERGMANN A, HUEBNER A, LOESER T. Integrated experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Sciences, 2008, 44(2):121-137.
[14] ARAUJO-ESTRADA S A, LOWENBERG M H, NEILD S, et al. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig:AIAA-2015-0750[R]. Reston, VA:AIAA, 2015.
[15] KANDIL O A, MENZIES M A. Effective control of simulated wing rock in subsonic flow:AIAA-1997-0831[R]. Reston, VA:AIAA, 1997.
[16] LIU W, ZHANG H X, ZHAO H Y. Numerical simulation and physical characteristics analysis for slender wing rock[J]. Journal of Aircraft, 2006, 43(3):858-861.
[17] 刘伟, 杨小亮, 张涵信. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2):214-228. LIU W, YANG X L, ZHANG H X. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-228(in Chinese).
[18] 叶友达, 张涵信, 张现峰. 高空高速飞行器强迫俯仰运动的滚转特性数值模拟研究[C]//第十五届全国计算流体力学会议. 北京:中国力学学会, 2012:1068-1073. YE Y D, ZHANG H X, ZHANG X F. Numerical investigation of the characteristics of double degree-of-freedom motion of the hypersonic vehicle[C]//Proceedings of the Fifth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2012:1068-1073(in Chinese).
[19] YE Y D, TIAN H, ZHANG X F. The stability of rolling motion of hypersonic vehicles with slender configuration under pitching maneuvering[J]. Science China Physics Mechanics & Astronomy, 2015, 58(6):064701.
[20] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:18-25. YAN C. The methodology and application of computational fluid dynamics[M]. Beijing:Beihang University Press, 2006:18-25(in Chinese).