针对大长细比飞行器外形超声速大迎角条件下前置小翼展开过程引起的非定常问题,应用结构动网格技术和基于脱体涡模拟(DES)的非定常数值模拟技术进行了研究,获得了详细的小翼展开过程流场结构非定常变化特性,并分析了小翼展开引起的法向力、纵向压心系数等气动特性随展开角度的变化规律。研究结果表明:超声速大迎角条件下前置小翼展开过程对小翼附近区域以及尾舵区域产生了强烈的干扰影响。小翼完全展开后,压心前移4.1%,降低了飞行器静稳定性,法向力系数增加15.6%,提高了气动过载,对飞行器机动性能均产生有利影响。
To research the unsteady performance of a supersonic vehicle during spreading of the front wings at high angle of attack, an unsteady numerical method based on the moving structure grid technique and Detached Eddy Simulation (DES) has been developed. The process of spreading of the front wings for a supersonic vehicle with large slenderness ratio has been investigated. Detailed unsteady progress of the flow field structure during spreading of the front wings is obtained. Variation in the aerodynamic characteristics such as the normal force coefficient and the center of pressure with spread angles of the front wing is analyzed. The results show that there is obviously unsteady effect and intense interference on the regions around the front wings and rear fins at high angle of attack during spreading of the front wings. After the spreading of the front wings, the center of pressure of the vehicle is moved forward by about 4.1%, and the static stability of the vehicle is reduced. Moreover, the normal force coefficient is increased by about 15.6%, and the aerodynamic overload is improved. These variations are good for enhancing the maneuverability of the vehicle.
[1] CHAMBERLAIN R, MCCLURE D, DANG A. CFD analysis of lateral jet interaction phenomena for the THAAD interceptor:AIAA-2000-0963[R]. Reston, VA:AIAA, 2000.
[2] DASH S M, PERRELL E R, ARUNAJATESAN S, et al. Lateral jet aerodynamic interaction simulations for dynamic pressure loads:AIAA-2000-2036[R]. Reston, VA:AIAA, 2000.
[3] EBRAHIMI H B. Numerical investigation of jet interaction in a supersonic freestream:AIAA-2005-4866[R]. Reston, VA:AIAA, 2005.
[4] 刘耀峰. CFD软件研发和战术导弹喷流/绕流复杂流动数值模拟[D]. 北京:北京理工大学, 2005:56-88. LIU Y F. Development of CFD software and complex flows numerical simulation for interaction flow field between external flow and jet flow of tactical missiles[D]. Beijing:Beijing Institute of Technology, 2005:56-88(in Chinese).
[5] CUI J, AGARWAL R K. 3-D CFD validation of an axisymmetric jet in cross-flow:AIAA-2005-1112[R]. Reston, VA:AIAA, 2005.
[6] RAUSCH J R, ROBERTS B B. Reaction control system plume flow field interaction effects on the space shutter orbiter:AIAA-1974-1104[R]. Reston, VA:AIAA, 1974.
[7] YANG G, YAO Y F, FANG J, et al. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control[J]. Chinese Journal of Aeronautics, 2016, 29(3):617-629.
[8] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//LIU C Q, LIU Z N. Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES. Los Angles:Greyden Press, 1997:137-147.
[9] STRELETS M. Detached eddy simulation of massively separated flows:AIAA-2001-0879[R]. Reston, VA:AIAA, 2001.
[10] 肖志祥, 符松. 用RANS/LES混合方法研究超音速底部流动[J].计算物理, 2009, 26(2):221-230. XIAO Z X, FU S. Study on supersonic base flow using RANS/LES methods[J]. Chinese Journal of Computational Physics, 2009, 26(2):221-230(in Chinese).
[11] SOSHI K, KOZO F. Computational study of a supersonic base flow using LES/RANS hybrid methodology:AIAA-2004-0068[R]. Reston, VA:AIAA, 2004.
[12] 赵伟文, 万德成. 用SST-DES和SST-URANS方法数值模拟亚临界雷诺数下三维圆柱绕流问题[J]. 水动力学研究与进展, 2016, 31(1):1-8. ZHAO W W, WAN D C. Numerical study of 3D flow past a circular cylinder at subcritical Reynolds number using SST-DES and SST-URANS[J]. Chinese Journal of Hydrodynamics, 2016, 31(1):1-8(in Chinese).
[13] 孙明波, 梁剑寒, 王振国. 超音速来流横向狭缝喷流标量输运的混合RANS/LES模拟[J]. 力学季刊, 2007, 28(3):395-399. SUN M B, LIANG J H, WANG Z G. Hybrid RANS/LES simulation for scalar transport of slot injection into a supersonic stream[J]. Chinese Quarterly of Mechanics, 2007, 28(3):395-399(in Chinese).
[14] WON S H, JEUNG I S, CHOI J Y. DES study of transverse jet injection into supersonic cross flows:AIAA-2006-1227[R]. Reston, VA:AIAA, 2006.
[15] SHIN J R, CHOI J Y. DES study of base and base-bleed flows with dynamic formulation of DES constant:AIAA-2011-0662[R]. Reston, VA:AIAA, 2011.
[16] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与进展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[17] ROE P L. Approximate Riemann solvers, parameter vectors and different schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[18] 唐海敏. 三维带操纵面机翼Euler方程非定常气动力计算[D]. 南京:南京航空航天大学, 2003:12-13. TANG H M. Aerodynamic computation of 3-D unsteady Euler equations for wings with control surface[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2003:12-13(in Chinese).
[19] JAMESON A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston, VA:AIAA, 1991.
[20] YOON S, JAMESON A. Lower-upper symmetric-Gauss-Sediel method for the Euler and Navier-Stokers equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[21] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[22] 王巍. 有相对运动的多体分离过程非定常数值算法研究及试验验证[D]. 长沙:国防科学技术大学, 2008:29-31. WANG W. Numerical simulation technique research and experiment verification for unsteady multi-body flowfield involving relative movement[D]. Changsha:National University of Defense Technology, 2008:29-31(in Chinese).
[23] 刘君, 刘瑜, 陈泽栋. 非结构变形网格和离散几何守恒律[J]. 航空学报, 2016, 37(8):2395-2407. LIU J, LIU Y, CHEN Z D. Unstructured deforming mesh and discrete geometric conservation law[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2395-2407(in Chinese).
[24] BARCHE J. Experimental data base for computer program assessment[R]. London:Technical Editing and Reproduction Ltd, 1979.
[25] USELTON B L, USELTON J C. Test mechanism for measuring pitch damping derivatives of missile configurations at high angles of attack:AEDC-TR-75-43[R]. Tennessee:Arnold Engineering Development Center, 1975.
[26] SCOTT M M. A reduced-frequency approach for calculating dynamic derivatives:AIAA-2005-0840[R]. Reston,VA:AIAA, 2005.