工程实际中,维修活动开展前往往存在一定时长的准备期,且由于环境时变性、系统长期运行后的劣化累积等因素导致部件状态性能水平存在不确定性,使得系统可靠性建模较为困难。对此,运用模糊数表征系统部件的失效转移率、修复转移率及修理工维修准备率的同时,以Power Law规则刻画部件间的故障相关关系,认为部件承担载荷超过某阈值时才会引发故障相关现象,并考虑了修理工数量与故障件数量之间关系对系统可靠性的影响,研究了载荷动态分配条件下带维修准备期的多修理工n中取k模糊多状态系统模型,建立了状态转移微分方程组,提出用逆向逐层分析的思路建立系统稳态概率系数的递推关系,应用α水平截集及Zadeh扩张原理确定了模糊状态概率的截集区间,得到了系统模糊稳态指标,最后通过算例给出了修理工数量及部件参数模糊程度对系统稳态指标的影响,验证了模型的适用性。
In engineering practice, the preparation period usually exists before maintenance activities. Because of external environment and deterioration of the system after a long period of operation, the state performance level of the components is uncertain, making the system reliability modeling more difficult. Therefore, the failure transfer rate, repair transfer rate and state performance level of components are regarded as fuzzy numbers. By using Power Law rule, the failure-correlation between components is characterized, and the failure-correlation phenomena is found to occur when the load on the component exceeds a threshold. The influence of the quantitative relationship between repairmen and fault components on system reliability is considered. A model for the k-out-of-n system with dynamic load distribution and maintenance preparation period is analyzed, and the state transfer differential equations are established. The inverse hierarchical analysis method is put forward to present the recursive relation of the steady-state probability coefficient of the system. By using the α-cut level set and the Zadeh-expansion principle, the level set internal of the fuzzy state probability is determined. The steady measures of the system are obtained and the influence of the fuzzy degree of the repairman number and component parameters on steady measures is presented by a numerical simulation, proving the applicability of the model.
[1] MURTHY D N P, NGUYEN D G. Study of two-component system with failure interaction[J]. Naval Research Logistics Quarterly, 1985, 32(2):239-247.
[2] NAKAGAWA T, MURTHY D N P. Optimal replacement policies for a two-unit failure interaction[J]. Operations Research, 1993, 27(4):427-438.
[3] LEUNG K N F, LAI K K. A preventive maintenance and replacement policy of a series system with failure interaction[J]. Optimization, 2012, 61(2):223-237.
[4] SUNG C K, SHEU S H, HSU T S, et al. Extended optimal replacement policy for a two-unit system with failure rate interaction and external shocks[J]. International Journal of System Science, 2013, 44(5):877-888.
[5] 高文科, 张志胜, 周一帆, 等.存在故障相关及不完备检测的主辅并联系统可靠性建模与维修策略[J].自动化学报,2015, 41(12):2100-2114. GAO W K, ZHANG Z S, ZHOU Y F, et al. Reliability modeling and maintenance policy for main and supplementary parallel system with failure interaction and imperfect detection[J]. Acta Automatica Sinica, 2015, 41(12):2100-2114(in Chinese).
[6] 周金宇, 谢里阳.多状态系统共因失效机理与定量分析[J].机械工程学报, 2008, 44(10):77-82. ZHOU J Y, XIE L Y. Common cause failure mechanism and risk probability quantitative estimation of multi-state system[J].Journal of Mechanical Engineering, 2008, 44(10):77-82(in Chinese).
[7] 张卓琦, 吴甦, 李斌锋.考虑故障相关的两部件系统机会维修策略[J].清华大学学报(自然科学版), 2012, 52(1):122-127. ZHANG Z Q, WU S, LI B F. Opportunistic maintenance policy for a two-unit system with failure interactions[J]. Journal of Tsinghua University (Science & Technology), 2012, 52(1):122-127(in Chinese).
[8] AMARI S V, MISRA K B, PHAM H. Reliability analysis of tampered failure rate load-sharing k-out-of-n:G system[C]//Proceedings of ISSAT International Conference on Reliability and Quality in Design, 2006:30-35.
[9] 王兴贵, 韩松臣, 秦俊奇, 等. 多机械臂搬运同一物体的协调动态载荷分配[J].力学学报, 1999, 31(1):119-125. WANG X G, HAN S C, QIN J Q, et al. Coordinated dynamic load distribution for mutiple robot manipulators carrying a common object system[J]. Acta Mechanica Sinica, 1999, 31(1):119-125(in Chinese).
[10] BORGES C L T, FALCAO D M. Optimal distributed generation allocation for reliability, losses, and voltage improvement[J]. International Journal of Electrical Power and Energy Systems, 2006, 28(6):413-420.
[11] DING Y, LISNIANSKI A. Fuzzy universal generating functions for multi-state system reliability assessment[J]. Fuzzy Sets and Systems, 2008, 159(3):307-324.
[12] 鄢民强, 杨波, 王展.不完全覆盖的模糊多状态系统可靠性计算方法[J].西安交通大学学报, 2011, 45(10):109-114. YAN M Q, YANG B, WANG Z. Reliability assessment for multistate system subject to imperfect fault coverage[J]. Journal of Xi'an Jiaotong University, 2011, 45(10):109-114(in Chinese).
[13] 涂春泰, 阚树林, 殷海蒙.大型复杂可修系统的模糊可靠性分析[J]. 机械设计与研究, 2002, 18(3):13-14. TU C T, KAN S L, YIN H M. Fuzzy assessment for multi-state repairable-system[J]. Machine Design and Research, 2002, 18(3):13-14(in Chinese).
[14] LIU Y, HUANG H. Reliability assessment for fuzzy multi-state system[J]. International Journal of Systems Sciences, 2010, 41(4):365-379.
[15] 胡林敏.串并混联可修系统的可用度分析及应用研究[D]. 秦皇岛:燕山大学, 2014:83-106. HU L M. Research on availability analysis and application for repairable series-parallel compound systems[D]. Qinhuangdao:Yanshan University, 2014:83-106(in Chinese).
[16] UPRETY I, PATRAI K. Estimating reliability of a repairable system with imperfect coverage and fuzzy parametric non-linear programming approach[J]. Opsearch, 2016, 53(1):1-15.
[17] GARG H. An approach for analyzing the reliability of industrial system using fuzzy Kolmogorov's differential equations[J]. Arabian Journal for Science and Engineering, 2015, 40(3):975-987.
[18] AMARI S. Reliability, risk and fault-tolerance of complex systems[D]. Kharagpur:Indian Institute of Technology, 1997:33-42.
[19] AMARI S, DUGAN J, MISRA R. A separable method for incorporating imperfect fault-coverage into combinatorial models[J]. IEEE Transactions on Reliability, 1999, 48(3):267-274.
[20] MYERS A F. k-out-of-n:G system reliability with imperfect fault coverage[J]. IEEE Transactions on Reliability, 2007, 56(3):464-473.
[21] PENG R, ZHAI Q, XING L, et al.Reliability analysis and optimal structure of series-parallel phased-mission systems subject to fault level coverage[J]. ⅡE Transactions, 2016, 48(8):736-746.
[22] 任博, 吕震宙, 李贵杰, 等. 基于通用生成函数的系统寿命可靠性分析[J]. 航空学报, 2013, 34(11):2550-2556. REN B, LV Z Z, LI G J, et al. Reliability analysis for system life based on universal generating function[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2550-2556(in Chinese).