材料工程与机械制造

耦合服役环境下高耐久性薄膜传感器裂纹监测

  • 崔荣洪 ,
  • 刘凯 ,
  • 侯波 ,
  • 谭翔飞 ,
  • 何宇廷
展开
  • 1. 空军工程大学 航空航天工程学院, 西安 710038;
    2. 陆军航空兵研究所, 北京 101121

收稿日期: 2017-06-20

  修回日期: 2017-10-09

  网络出版日期: 2017-10-19

基金资助

国家自然科学基金(51201182)

Crack monitoring based on high durability film sensor in coupled environment

  • CUI Ronghong ,
  • LIU Kai ,
  • HOU Bo ,
  • TAN Xiangfei ,
  • HE Yuting
Expand
  • 1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
    2. Army Aviation Research Institute, Beijing 101121, China

Received date: 2017-06-20

  Revised date: 2017-10-09

  Online published: 2017-10-19

Supported by

National Natural Science Foundation of China (51201182)

摘要

现有裂纹监测技术多存在耐久性差、虚警率高的问题。以物理气相沉积(PVD)薄膜传感器为研究对象,提出了提高其耐久性的方案,并检验了其在耦合服役环境下的监测性能。首先,选定了Cu作为使传感器耐久性最佳的导电传感层沉积材料,并采用离子镀氮化铝(AlN)薄膜和涂覆705硅胶对PVD薄膜传感器进行了封装保护;然后,综合考虑服役环境因素,编制加速环境谱,将经过封装的制备有薄膜传感器的试验件进行环境耦合加速试验;最后,对环境试验后的薄膜传感器开展疲劳裂纹监测试验,并将薄膜传感器监测结果与显微镜观察测量结果进行对比。试验结果表明:薄膜传感器能承受1 000 h严酷环境的考验,具有较高的耐久性和稳定性;环境试验后的薄膜传感器对裂纹变化敏感,PVD薄膜传感器的监测结果与基体裂纹扩展的实测信息相一致,PVD薄膜传感器的电位监测信号可以作为裂纹扩展状态和结构损伤程度的监测判据,PVD薄膜传感器可以实现对金属结构裂纹的定量监测,监测精度可达到1 mm。

本文引用格式

崔荣洪 , 刘凯 , 侯波 , 谭翔飞 , 何宇廷 . 耦合服役环境下高耐久性薄膜传感器裂纹监测[J]. 航空学报, 2018 , 39(3) : 421535 -421535 . DOI: 10.7527/S1000-6893.2017.421535

Abstract

Most of existing crack monitoring methods have disadvantages in terms of poor durability and high false alarm probability. A scheme for improving the durability of the Physical Vapor Deposition (PVD) film sensor is proposed, and the performance of crack monitoring of the sensor in coupled environment is tested. First, Cu Is selected as the depositing material of the conductive sensing layer to make the best durability of the film sensor, and the ion plating AlN film and coated 705 silica gel are used to package the PVD film sensor. Second, with comprehensive consideration of service environment, the periodic accelerated environment spectrum is compiled, and the packaged PVD film sensor deposited on the substrate is tested in this spectrum. Finally, fatigue crack monitoring of the post-environment-test specimen is carried out, and the results of film sensor monitoring are compared with those observed from the microscope. Comparison results show that the film sensor is able to endure the test of 1000 h in adverse environment conditions, so it has relatively high durability and stability. The post-environment-test film sensor is sensitive to crack development, and the result of PVD film sensor monitoring consists with measured crack development information. The potential monitoring signal of the PVD sensor can be used as the judging criteria of the crack stage and structural damage extent, and the PVD film sensor can realize quantitative monitoring of the fatigue crack with precision reaching 1 mm.

参考文献

[1] STASZEWSKI W. Health monitoring of aerospace structures:Smart sensor technologies and signal processing[C]//Smart Sensors & Signal Processing Wiley & Sons Ltd, 2004.
[2] 袁慎芳. 结构健康监控[M]. 北京:国防工业出版社, 2007. YUAN S F. Structural health monitoring and damage control[M]. Beijing:National Defense Industry Press, 2007(in Chinese).
[3] KUANG K S C, CANTWELL W J. Use of conventional optical fiber Bragg grating for damage detection in advanced composite structures:A review[J]. Applied Mechanics Reviews, 2003, 56(5):493-513.
[4] STASZEWSKI W. Monitoring on-line integrated technologies for operational reliability-monitor[J]. Air and Space Europe, 2000, 2(4):67-72.
[5] PETERS K, PATTIS P, BOTSIS J, et al. Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain field[J]. Optics and Lasers in Engineering, 2000, 33(2):107-119.
[6] HONGO A, KOJIMA S, KOMATSUZAKI S. Application of fiber Bragg grating sensors and high-speed interrogation techniques[J]. Structural Control and Health Monitoring, 2005, 12(3-4):269-282
[7] 陈祥林, 丁天怀, 黄毅平. 新型接近式柔性点涡流阵列传感器系统[J]. 机械工程学报, 2006, 42(8):150-153. CHEN X L, DING T H, HUANG Y P. Novel flexible eddy current array sensor system for proximity sensing[J]. Journal of Mechanical Engineering, 2006, 42(8):150-153(in Chinese).
[8] RABIEI M, MODARRES M. Quantitative methods for structural health management using in situ acoustic emission monitoring[J]. International Journal of Fatigue, 2013, 49:81-89.
[9] 具典淑, 周智, 欧进萍. 基于PVDF的金属构件裂纹监测研究[J]. 压电与声光, 2004, 26(3):245-248. JU D S, ZHOU Z, OU J P. Research on metal crack monitoring based on PVDF sensors[J]. Piezoelectrics & Acoustooptics, 2004, 26(3):245-248(in Chinese).
[10] WHWATLEY G, CLELLAN K L M. Remote periodic monitoring of fatigue crack prone areas by CVMTM-The H-53 experience[C]//6th Joint FAA/DoD/NASA Aircraft Conference on Aging Aircraft. Missouri:FAA, 2002:147-158.
[11] WEI R P, BRAZILL R L. An AC potential system for crack length measurement[C]//The Measurement of Crack Length and Shape During Fracture and Fatigue. Warley:EMAS, 1980:190-201.
[12] 杜金强, 何宇廷, 崔荣洪, 等. 基于电位法原理的金属结构裂纹监测传感器研究[J]. 南京航空航天大学学报, 2010, 42(3):387-391. DU J Q, HE Y T, CUI R H, et al. Research on surface crack monitoring sensor of metallic structure based on electric potential method[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(3):387-391(in Chinese).
[13] BEHNAM A, LEON J, YADIENKA M, et al. Single-walled carbon nanotube-modified epoxy thin films for continuous crack monitoring of metallic structures[J]. Structural Health Monitoring, 2012, 11(5):589-601.
[14] 侯波, 何宇廷, 崔荣洪, 等. 基于Ti/TiN薄膜传感器的飞机金属结构裂纹监测[J]. 航空学报, 2014, 35(3):878-884. HOU B, HE Y T, CUI R H, et al. Crack monitoring of aircraft metallic structures based on Ti/TiN film sensors[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):878-884(in Chinese).
[15] 谭翔飞, 何宇廷, 侯波, 等. 腐蚀环境影响下薄膜传感器金属结构裂纹监测[J]. 北京航空航天大学学报, 2017, 43(7):1433-1441. TAN X F, HE Y T, HOU B, et al. Metal structure crack monitoring based on film sensor under corrosion environment[J]. Journal of Beijing University of Aeronautics and Astronautics 2017, 43(7):1433-1441(in Chinese).
[16] 刘健光, 陈群志, 吕志刚, 等. ICMS传感器防护技术及加速耐久性试验方法研究[J]. 中国表面工程, 2009, 22(4):37-39. LIU J G, CHEN Q Z, LU Z G, et al. The protection and accelerated corrosion test of sensor of ICMS[J]. China Surface Engineering, 2009, 22(4):37-39(in Chinese).
[17] 侯波, 何宇廷, 崔荣洪, 等. 基于涂层传感器的金属结构疲劳裂纹监测[J]. 北京航空航天大学学报, 2013, 39(10):1298-1302. HOU B, HE Y T, CUI R H, et al. Fatigue crack monitoring of metallic structure based on coating sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10):1298-1302(in Chinese).
[18] RUDENJA S, PAN J, WALLINDER I O, et al. Passivation and anodic oxidation of duplex TiN coating on stainless steel[J]. Journal of the Electrochemical Society, 1999, 146(11):4082-4086.
[19] 张钧, 赵彦辉. 多弧离子镀技术与应用[M]. 北京:冶金工业出版社, 2007:92-94. ZHANG J, ZHAO Y H. Multi-arc ion plating technology and application[M]. Beijing:Metallurgical Industry Press, 2007:92-94(in Chinese).
[20] MITSUSHIO M, MIYASHITA K, HIGO M. Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu and Al[J]. Sensors and Actuators A:Physical, 2006, 125(2):296-303.
[21] ZHU Y K, YU Z M, NIU Y S, et al. Assessment of adhesion of electroplated Cu and multilayered Cu coatings by a bidirectional bend test[J]. Journal of Adhesion Science and Technology, 2012, 26(10-11):1645-1652.
[22] 全国金属与非金属覆盖层标准化技术委员会. 金属基体上金属和其他无机覆盖层经腐蚀试验后的试样和试件的评级:GB/T 6461-2002[S]. 北京:中华人民共和国国家质量检验检疫总局, 2002. National Metal and Nonmetal Coating Layer Standardization Technical Committee. Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates-Rating of test specimens and manufactured articles subjected to corrosion tests:GB/T 6461-2002[S]. Beijing:The State of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2002(in Chinese).
[23] Boeing. Bone acid-sulfuric acid anodizing:BAC5632A[S]. Chicago:Boeing, 2001.
[24] 侯波, 何宇廷, 崔荣洪, 等. 同心环状薄膜传感器阵列及其飞机金属结构裂纹监测研究[J]. 机械工程学报, 2015, 51(24):9-14. HOU B, HE Y T, CUI R H, et al. Concentric ting film sensor array and its experimental research on crack monitoring for aircraft metallic structure[J]. Journal of Mechanical Engineering, 2015, 51(24):9-14(in Chinese).
[25] 刘道庆, 吴超, 陈亮. 飞机腐蚀疲劳典型部位地面停放局部环境谱及当量折算[J]. 飞机设计, 2011, 31(5):15-17. LIU D Q, WU C, CHEN L. China surface & equivalence converting of aircraft typical parts[J]. Aircraft Design, 2011, 31(5):15-17(in Chinese).
[26] 杨晓华, 金平, 陈跃良. 飞机空中使用环境谱的编制[J]. 航空学报, 2008, 29(1):85-90. YANG X H, JIN P, CHEN Y L. Making out aerial environment spectrum of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):85-90(in Chinese).
[27] 周希沅. 飞机结构的当量环境谱与加速试验谱[J].航空学报, 1996, 17(5):613-616. ZHOU X Y. Equity environmental spectrum and speed test spectrum for aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(5):613-616(in Chinese).
[28] 陈群志, 孙祚东, 韩恩厚. 典型飞机结构加速腐蚀试验方法研究[J]. 装备环境工程, 2004, 1(2):13-17. CHEN Q Z, SUN Z D, HAN E H. Study on accelerated corrosion test methods of typical aircraft structure[J]. Equipment Environmental Engineering, 2004, 1(2):13-17(in Chinese)
文章导航

/