流体力学与飞行力学

基于超网格的重叠网格守恒插值方法

  • 崔鹏程 ,
  • 唐静 ,
  • 李彬 ,
  • 马明生 ,
  • 邓有奇
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2017-07-03

  修回日期: 2017-10-10

  网络出版日期: 2017-10-10

A conservative interpolation method for overset mesh via super mesh

  • CUI Pengcheng ,
  • TANG Jing ,
  • LI Bin ,
  • MA Mingsheng ,
  • DENG Youqi
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-07-03

  Revised date: 2017-10-10

  Online published: 2017-10-10

摘要

保证重叠网格边界数据插值的守恒性是计算流体力学面临的一大难题。基于超网格方法与格心格式有限体积法,发展了一种新型混合重叠网格守恒插值方法。详细研究了用网格切割技术在重叠网格边界构造局部超网格,用网格求交算法合理地扩大贡献单元模板,建立了一种适用于任意网格类型的隐式并行重叠网格守恒插值方法,以超网格为媒介可实现重叠网格二阶精度的守恒插值。数值结果表明,本文方法对二阶分布的流场变量具有严格的守恒性,相比三线性插值方法和逆向距离权插值方法,本文方法减小了数值误差,提高了重叠网格边界的插值精度,加快了计算收敛速度,改善了重叠区域网格尺度相差较大时流场的光滑性和连续性。

本文引用格式

崔鹏程 , 唐静 , 李彬 , 马明生 , 邓有奇 . 基于超网格的重叠网格守恒插值方法[J]. 航空学报, 2018 , 39(3) : 121569 -121569 . DOI: 10.7527/S1000-6893.2017.21569

Abstract

Conservative interpolation of the overset mesh interface is still a challenge for CFD. Based on the supermesh technology and the centre-based finite volume method, a new conservative interpolation method for the hybrid overset mesh is developed. The cell-cut algorithm is used to build the local supermesh in the overset grid interface, and the mesh intersection method is employed to expand the number of donor cells reasonably. Then, a conservative interpolation method which applies implicit parallel algorithm is built, which is suitable for arbitrary polyhedral grids. Flow field variables can be interpolated conservatively in overset meshes with second-order accuracy via the local supermesh. Numerical results show that the method proposed is strictly conservative for second-order distributed flow field variables. Compared with the trilinear interpolation method and the reverse distance-weighted interpolation method, the proposed method can reduce the numerical errors, interpolate the variables more accurately, accelerate the convergence process of the residual error, and improve the continuity and smoothness of the flow field contour when the mesh scale matches badly at the interface.

参考文献

[1] 李鹏, 高振勋, 蒋崇文. 重叠网格方法的研究进展[J]. 力学与实践, 2014, 36(5):551-565. LI P, GAO Z X, JIANG C W. The progress of the overlapping grid techniques[J]. Mechanics in Engineering, 2014, 36(5):551-565(in Chinese).
[2] SHIH T I P. Overset grids:Fundamentals and practical issues:AIAA-2002-3259[R]. Reston, VA:AIAA, 2002.
[3] 田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流[J]. 航空学报, 2007, 28(1):46-51. TIAN S L, WU Y Z, XIA J. Simulation of flows past multi-body in relative motion with dynamic unstructured overset grid method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):46-51(in Chinese).
[4] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese).
[5] MARSTIN C, MCCONNAUGHEY H. Computational problems on composite grids:AIAA-1984-1611[R]. Reston, VA:AIAA, 1984.
[6] KANG Z L, YAN C, YU J, et al. A fast and reliable overset unstructured grids approach[J]. Acta Mechanica Sinica, 2013, 29(2):149-157.
[7] 黄宇, 阎超, 王文, 等. 混合重叠网格插值方法的改进及应用[J]. 北京航空航天大学学报, 2017, 43(2):285-292. HUANG Y, YAN C, WANG W, et al. An improved interpolation method for hybrid overset grid and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2):285-292(in Chinese).
[8] 周乃春, 李彬, 郑鸣, 等. 带控制率导弹投放数值模拟[J]. 空气动力学学报, 2013, 31(3):107-115. ZHOU N C, LI B, ZHENG M, et al. Missile separation simulation with control laws[J]. Acta Aerodynamica Sinica, 2013, 31(3):107-115(in Chinese).
[9] FARRELL P E, PIGGOTT M D, PAIN C C, et al. Conservative interpolation between unstructured meshes via supermesh construction[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33):2632-2642.
[10] ZHENG Y, LIOU M S. Progress in the three-dimensional DRAGON grid scheme:AIAA-2001-2540[R]. Reston, VA:AIAA, 2001.
[11] XU K, SUN G, CAI J Y. On interface conservative attributions for computations of the complex flows of high-lift system based on chimera tech-nique[C]//Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on IEEE. Piscataway, NJ:IEEE Press, 2010:279-283.
[12] 张宇飞, 陈海昕, 符松. 基于高阶守恒重映对窗口嵌入技术的改进[J]. 计算物理, 2011, 28(2):167-173. ZHANG Y F, CHEN H X, FU S. Improvement on window embedment technology with high order conservative remapping[J]. Chinese Journal of Computational Physics, 2011, 28(2):167-173(in Chinese).
[13] ZHAO X, GUAN H W, YANG Z, et al. An implicit and globally conservative unstructured chimera grid method:AIAA-2011-0777[R]. Reston, VA:AIAA, 2011.
[14] FARRELL P E, MADDISON J R. Conservative interpolation between volume meshes by local Galerkin projection[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(1):89-100.
[15] MENON S, SCHMIDT D P. Conservative interpolation on unstructured polyhedral meshes:An extension of the supermesh approach to cell-centered finite-volume variables[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41):2797-2804.
[16] 徐春光, 董海波, 刘君. 基于单元相交的混合网格精确守恒插值方法[J]. 爆炸与冲击, 2016, 36(3):305-312. XU C G, DONG H B, LIU J. An accurate conservative interpolation method for mixed grid based on the intersection of grid cells[J]. Explosion and Shock Waves, 2016, 36(3):305-312(in Chinese).
[17] 崔鹏程, 邓有奇, 唐静, 等.基于伴随方程的网格自适应及误差修正技术[J].航空学报, 2016,37(10):2992-3002. CUI P C, DENG Y Q, TANG J, et al. Adjoint-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2992-3002(in Chinese).
[18] BLAZEK J. Computational fluid dynamics:principles and applications[M]. 3rd ed. Oxford:Elsevier, 2015:75-120.
[19] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.
[20] SPALART S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[21] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[22] 李彬, 唐静, 邓有奇, 等. 并行的多重网格方法在离散伴随优化中的应用[J]. 航空学报, 2014, 35(8):2091-2101. LI B, TANG J, DENG Y Q, et al. Application of parallel multigrid algorithm to discrete adjoint optimization[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2091-2101(in Chinese).
[23] BEATRICE R, JAY S. Robust and scalable overset grid assembly for partitioned unstructured meshes:AIAA-2013-0797[R]. Reston, VA:AIAA, 2013.
[24] THEOHARIS T, IAN P. Two parallel methods for polygon clipping[J]. Computer Graphics Forum, 2010, 8(2):107-114.
[25] MARTINEZ F, RUEDA A J, FEITO F R. A new algorithm for computing Boolean operations on polygons[J]. Computers & Geosciences, 2009, 35(6):1177-1185.
[26] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for fly-wing shape optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[27] ALAUZET F, MEHRENBERGER M. P1-conservative solution interpolation on unstructured triangular meshes[J]. International Journal for Numerical Methods in Engineering, 2010, 84(13):1552-1588.
[28] GARIMELLA R, KUCHARIK M, SHASHKOV M. An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes[J]. Computers & Fluids, 2007, 36(2):224-237.
[29] MAYEUR J, DUMONT A, DESTARAC D, et al. RANS simulations on TMR test cases and M6 wing with the ONERA elsA flow solver:AIAA-2015-1745[R]. Reston, VA:AIAA, 2015.
[30] DURRANI N, QIN N. Comparison of RANS, DES and DDES results for ONERA M6 wing at transonic flow speed using an in-house parallel code:AIAA-2011-0190[R]. Reston, VA:AIAA, 2011.
[31] DA SILVA R G, AZEVEDO J L F, BASSO E. Simulation of ONERA M6 wing flows for assessment of turbulence modeling capabilities:AIAA-2016-0549[R]. Reston, VA:AIAA, 2016.
[32] SAXENA S K, NAIR M T. Implementation and testing of Spalart-Allmaras model in a multi-block code:AIAA-2002-0835[R]. Reston, VA:AIAA, 2002.
[33] LUO H, BAUM J D, LÖHNER R. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids[J]. Journal of Computational Physics, 2007, 225(1):686-713.
[34] HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment:AEDC-TSR-91-P4[R]. New York:AEDC, 1991.
文章导航

/