电子电气工程与控制

弓网电弧辐射特性及对机场下滑信标的影响

  • 杨晓嘉 ,
  • 朱峰 ,
  • 邱日强 ,
  • 李冀昆
展开
  • 1. 中国民用航空局第二研究所 民航空管工程技术研究所, 成都 610041;
    2. 西南交通大学 电气工程学院, 成都 611730

收稿日期: 2017-03-17

  修回日期: 2017-09-25

  网络出版日期: 2017-09-25

基金资助

导航设备在线测试系统研制(MHRD20140109)

Radiation characteristics of pantograph-catenary arc and its influence on airport glide beacon

  • YANG Xiaojia ,
  • ZHU Feng ,
  • QIU Riqiang ,
  • LI Jikun
Expand
  • 1. ATM Engineering Technology Institute of CAAC, The Second Research Institute of CAAC, Chengdu 610041, China;
    2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611730, China

Received date: 2017-03-17

  Revised date: 2017-09-25

  Online published: 2017-09-25

Supported by

Development of On-line Test System for Navigation Equipment (MHRD20140109)

摘要

为获得弓网电弧辐射特性及从理论上分析其对机场下滑信标的影响。选择典型电气化动车线路,首先基于CISPR16-1标准,利用电磁干扰接收机对电分相和普通点处的弓网电弧电磁辐射进行点频测试,获得了其在下滑信标台频谱内的辐射特性,然后基于电波传播理论,以电气化轨道平行跑道为例,分析了弓网电弧电磁辐射对飞机导航的影响。结果表明:电弧电磁辐射具有一定的随机特性,普通点处产生的电磁辐射场强小于电分相处;普通点的电磁辐射不会对飞机的导航产生干扰;当轨道距跑道中心的距离分别为700、120和60 m时,电分相拉弧点距下滑信标台天线的距离应分别小于3 291、546和249 m时才不会对飞机的导航产生干扰。本结果能够为轨道电气化和民用航空这两大工业体系在机场区域的电磁兼容性设计提供依据。

本文引用格式

杨晓嘉 , 朱峰 , 邱日强 , 李冀昆 . 弓网电弧辐射特性及对机场下滑信标的影响[J]. 航空学报, 2018 , 39(1) : 321252 -321252 . DOI: 10.7527/S1000-6893.2017.321252

Abstract

The radiation characteristics of the pantograph-catenary arc and its influence on the airport glide beacon are studied. A typical line of electric multiple units is chosen in the study. According to the standard of CISPR16-1, the electromagnetic radiation of the pantograph-catenary arc at the neutral section and the general point is measured using the electro magnetic interference receiver, and its characteristics in the spectrum range of the glide beacon are obtained. Based on the wave propagation theory, the impact of electromagnetic radiation on the airport glide beacon is analyzed for the case of the electrified railway paralleled to the runway. The results show that the electromagnetic radiation is random, and the strength of the radiated electric field of the general point is less than that of the neutral section. The airport navigation will not be affected by the electromagnetic radiation of the general point. When the distance between the railway and runway center are 700, 120 and 60 m, the distance between the arc point of the neutral section and the antenna of the glide beacon must be less than 3 291, 546 and 249 m, respectively. The results can provide reference for the design of electromagnetic compatibility in the airport area.

参考文献

[1] 马云双, 刘志刚, 马岚, 等. 动车组弓网离线放电电磁骚扰源模型研究[J]. 中国铁道科学, 2013, 34(5):76-81. MA Y S, LIU Z G, MA L, et al. Electromagnetic disturbance source model of discharge upon pantograph-catenary disconnection of EMU[J]. China Railway Science, 2013, 34(5):76-81(in Chinese).[2] WANG Y, LIU Z G, MU X Q, et al. An extended habedank's equation-based EMTP model of pantograph arcing considering pantograph-catenary interactions and train speeds[J]. IEEE Transactions on Power Delivery, 2016, 31(3):1186-1194.[3] 王英, 刘志刚, 母秀清, 等. 高速铁路离线电弧作用下的弓网温度场研究[J]. 计算机仿真, 2015, 32(7):154-159. WANG Y, LIU Z G, MU X Q, et al. Study on pantograph-catenary system temperature field of high-speed railway under off-line arc conditions[J]. Computer Simulation, 2015, 32(7):154-159(in Chinese).[4] 严加斌,朱峰,李军,等. 高速动车组速度传感器的电磁干扰测试与分析[J]. 电子测量与仪器学报, 2015, 29(3):433-438. YAN J B, ZHU F, LI J, et al. Electromagnetic interference measurement and analysis of high-speed electric multiple units speed sensor[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(3):433-438(in Chinese).[5] 朱峰, 唐毓涛, 高晨轩. 弓网离线电弧对CRH380BL型动车组速度传感器的电磁干扰机理及抑制[J]. 中国铁道科学, 2016, 37(6):69-74. ZHU F, TANG Y T, GAO C X. Mechanism and suppression of electromagnetic interference of pantograph-catenary arc to speed sensor of CRH380BLelectric multiple unit[J]. China Railway Science, 2016, 37(6):69-74(in Chinese).[6] 鲁合德, 朱峰, 李鑫, 等. 钢筋混凝土对地铁弓网离线电弧屏蔽效能的研究[J]. 电波科学学报, 2016, 31(6):1209-1215. LU H D, ZHU F, LI X, et al. Shielding effectiveness of reinforced concrete toward electric arcs in pantograph-catenary systems of metro[J]. Chinese Journal of Radio Science, 2016, 31(6):1209-1215(in Chinese).[7] 唐正明, 章三妹, 朱峰. 动车组数字设备的弓网电弧电磁干扰分析[J]. 电子测量与仪器学报, 2014, 28(9):980-985. TANG Z M, ZHANG S M, ZHU F. Analysis of electromagnetic interference on EMUs digital equipment caused by pantograph-catenary arc[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(9):980-985(in Chinese).[8] 李希炜, 朱峰. 武广高速铁路轨旁电磁干扰实测与分析[J]. 铁道标准设计, 2014, 58(9):121-124. LI X W, ZHU F. Measurement and analysis of wayside EMI on Wuhan-Guangzhou high speed electrical railway[J]. Railway Standard Design, 2014, 58(9):121-124(in Chinese).[9] 牛大鹏, 朱峰, 邱日强, 等. 高铁离线电弧射频和车内低频电磁暴露的特性研究[J]. 高电压技术, 2016, 42(8):2587-2595. NIU D P, ZHU F, QIU R Q, et al. Study on the characteristics of off-line arc's radio-frequency and low-frequency electromagnetic exposure inside the high speed rail train[J]. High Voltage Engineering, 2016, 42(8):2587-2595(in Chinese).[10] 王英, 刘志刚, 范福强, 等. 弓网电弧模型及其电气特性的研究进展[J]. 铁道学报, 2013, 35(8):35-43. WANG Y, LIU Z G, FAN F Q, et al. Review of search development of pantograph-catenary arc model and electrical characteristics[J]. Journal of The China Railway Society, 2013, 35(8):35-43(in Chinese).[11] 郭凤仪, 王鑫, 刘艳丽. 基于Mayr模型改进的适用于串联故障电弧的新模型[J]. 电工电能新技术, 2015, 34(2):67-71. GUO F Y, WANG X, LIU Y L. New improved model for series arc fault based on Mayr model[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(2):67-71(in Chinese).[12] 黄绍平, 杨青, 李靖. 基于MATLAB的电弧模型仿真[J]. 电力系统及其自动化学报, 2005, 17(5):64-67. HUANG S P, YANG Q, LI J. Simulation of arc models based on MATLAB[J]. Proceedings of the CSU-EPSA, 2005, 17(5):64-67(in Chinese).[13] 郭凤仪, 王喜利, 王智勇, 等. 弓网电弧辐射电场噪声实验研究[J]. 电工技术学报, 2015, 30(14):220-225. GUO F Y, WANG X L, WANG Z Y, et al. Research on radiated electric field noise of pantograph arc[J]. Transaction of China Electrotechnical Society, 2015, 30(14):220-225(in Chinese).[14] 郭凤仪, 张艳立, 王智勇, 等. 弓网电弧实验系统与辐射噪声实验研究[J]. 电工电能新技术, 2015, 34(12):49-53. GUO F Y, ZHANG Y L, WANG Z Y, et al. Design of pantograph arc experiment system and study on radiated noise[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(12):49-53(in Chinese).[15] 郭凤仪, 王喜利, 胡兴邦, 等. 弓网电弧电磁辐射噪声仿真研究[J]. 系统仿真学报, 2017, 29(1):83-90. GUO F Y, WANG X L, HU X B, et al. Simulation research on electromagnetic radiation noise of pantograph arc[J]. Journal of System Simulation, 2017, 29(1):83-90(in Chinese).[16] 王万岗, 吴广宁, 高国强, 等. 高速铁路弓网电弧试验系统[J]. 铁道学报, 2012, 34(4):22-27. WANG W G, WU G N, GAO G Q, et al. The pantograph-catenary arc test system for high-speed railways[J]. Journal of The China Railway Society, 2012, 34(4):22-27(in Chinese).[17] 张晨, 黄继东, 韩通新. 预测高速铁路电磁辐射的一种有效方法[J]. 中国铁道科学, 2000, 21(2):86-92. ZHANG C, HUANG J D, HAN T X. An effective method of predicting electromagnetic emission of high speed railway[J]. China Railway Science, 2000, 21(2):86-92(in Chinese).[18] 阎顺. 城际轨道交通对机场导航设施电磁影响评价[J]. 铁道工程学报, 2015, 32(6):102-105. YAN S. Assessment of electromagnetic impact on airport navigation facilities of intercity rail transit[J]. Journal of Railway Engineering Society, 2015, 32(6):102-105(in Chinese).[19] 曾祥可. 电气化铁路与机场导航设施的电磁兼容[J]. 铁道工程学报, 2006, 23(9):60-64. ZENG X K. Electromagnetic compatibility between electrification railway and navigation facilities[J]. Journal of Railway Engineering Society, 2006, 23(9):60-64(in Chinese).[20] 靳远. 城际铁路对机场导航设施电磁干扰计算与分析[J]. 铁道标准设计, 2013(12):118-121. JIN Y. Calculation and analysis of electromagnetic interference with airport navigation system caused by intercity railway[J]. Railway Standard Design, 2013(12):118-121(in Chinese).[21] 张育明,卫中安. 综合客运交通中机场电磁环境影响分析[J]. 环境技术, 2014(S1):181-186. ZHANG Y M, WEI Z A. Analysis of airport electromagnetic environment effects from synthesized passenger transportation[J]. Environmental Technology, 2014(S1):181-186(in Chinese).
文章导航

/