电子电气工程与控制

七阶正交容积卡尔曼滤波算法

  • 孟东 ,
  • 缪玲娟 ,
  • 邵海俊 ,
  • 沈军
展开
  • 北京理工大学 自动化学院, 北京 100081

收稿日期: 2017-05-12

  修回日期: 2017-08-20

  网络出版日期: 2017-08-20

基金资助

国家自然科学基金(61153002,61473039)

A seventh-degree cubature quadrature Kalman filter

  • MENG Dong ,
  • MIAO Lingjuan ,
  • SHAO Haijun ,
  • SHEN Jun
Expand
  • College of Automation, Beijing Institute of Technology, Beijing 100081, China

Received date: 2017-05-12

  Revised date: 2017-08-20

  Online published: 2017-08-20

Supported by

National Natural Science Foundation of China (61153002, 61473039)

摘要

在高斯滤波框架下,阶次越高,近似精度越高。为提高滤波精度,通过提高阶次,提出了七阶正交容积卡尔曼滤波(CQKF)算法。在传统CQKF算法的基础上,该算法扩展了线性积分的近似阶次,提出了七阶球面积分的确定性采样方法;进而扩展了球-半径准则,提高了滤波估计精度。飞行器目标跟踪的仿真实验证明了该算法的有效性,证明了七阶CQKF比五阶CQKF、三阶容积卡尔曼滤波器(CKF)和无迹卡尔曼滤波器(UKF)有更高的滤波精度。

本文引用格式

孟东 , 缪玲娟 , 邵海俊 , 沈军 . 七阶正交容积卡尔曼滤波算法[J]. 航空学报, 2017 , 38(12) : 321410 -321410 . DOI: 10.7527/S1000-6893.2017.321410

Abstract

In the Gaussian filter frame, the higher the order, the higher the accuracy of the approximation. To improve the filtering accuracy, a seventh-degree Cubature Quadrature Kalman Filter (CQKF) algorithm is proposed by improving the degree. Based on the traditional CQKF, the algorithm extends the approximate degree of linear integrals, and proposes a deterministic sampling method for the seven-degree spherical integral. Then the spherical-radial rule is extended to improve the accuracy of the filter. The simulation results of the aircraft target tracking demonstrate the effectiveness of the algorithm. It is proved that the seventh-degree CQKF is more accurate than the fifth-CQKF, third-degree Cubature Kalman Filter (CKF) and Unscented Kalman Filter (UKF).

参考文献

[1] KALMAN R E. A new approach to linear filtering and prediction problems[J].Transaction of the ASME-Journal of Basic Engineering, 1960, 82(Series D):35-45.[2] CUI B B, CHEN X Y, TANG X H. Improved cubature Kalman for GNSS/INS based on transformation of posterior sigma-points error[J]. IEEE Transactions on Signal Processing, 2017, 65(11):2975-2987.[3] HU G G, GAO S S, ZHONG Y G. A derivative UKF for tightly coupled INS/GPS integrated navigation[J]. ISA Transactions, 2015, 56:135-144.[4] KULIKOV G Y, KULIKOVA M V. Accurate continuous-discrete unscented Kalman filtering for estimation of nonlinear continuous-time stochastic models in radar tracking[J]. Signal Processing, 2017, 139:25-35.[5] BUCY R S, SENNE K D. Digital synthesis of non-linear filters[J]. Automatica, 1971, 7(3):287-298.[6] SUNAHARA Y, YAMASHITA K. An approximate method of state estimation for non-linear dynamical systems with state-dependent noise[J]. Journal of Fluids Engineering, 2009, 92(2):385.[7] JULIER S J, UHLMANN J K. A new extension of the Kalman filter to nonlinear systems[J]. Proceedings of the Society of Photo-optical Instrumentation Engineers, 1997,3068(1):182-193.[8] JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J].Proceedings of IEEE, 2004,92(3):401-422.[9] ITO K, XIONG K. Gaussian filters for nonlinear filtering problems[J]. IEEE Transactions on Automatic Control,2000, 45(5):910-927.[10] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269.[11] ARASARATNAM I, HAYKIN S, HURD T R. Cubature Kalman filtering for continuous-discrete systems:Theory and simulations[J]. IEEE Transactions on Signal Processing, 2010, 58(10):4977-4993.[12] BHAUMIK S, SWATI. Cubature quadrature Kalman filter[J]. IET Signal Processing, 2013, 7(7):533-541.[13] JIA B, XIN M, CHENG Y. Higher degree cubature quadrature Kalman filter[J]. Automatica, 2013, 49(1):510-518.[14] WU Y, HU D, WU M. A numerical-integration perspective on Gaussian filters[J].IEEE Transactions on Signal Processing, 2006, 54(8):2910-2921.[15] JIA B, XIN M, CHENG Y. High-degree cubature Kalman filter[J]. Automatica, 2013, 49(2):510-518.[16] GENZ A. Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces[J]. Journal of Computational and Applied Mathematics, 2003, 157(1):187-195.[17] SILVESTER P. Symmetric quadrature formulae for simplexes[J]. Mathematics of Computation, 1970, 24(109):95-100.[18] ZHANG Y G, HUANG Y L, LI N, et al. Embedded cubature Kalman filter with adaptive setting of free parameter[J]. Signal Processing, 2015, 114(C):112-116.[19] ZHANG Y G, HUANG Y L, LI N, et al. Interpoltory cubature Kalman filter[J]. IET Control Theory Applications, 2015(9):1731-1739.[20] KRYLOV V I. Approximate calculation of integrals[M]. New York:Dover Publication, 2005:58-66.[21] HILDEBRAND F B. Introduction to numerical analysis[M]. 2nd ed. New York:Dover Publication, 2008:195-198.[22] WU H, CHEN S X. Robust range-parameterized cubature Kalman filter for bearings-only tracking[J]. Journal of Central South University, 2016, 23(6):1399-1405.[23] WU H, CHEN S X. Ranre-parameterized orthogonal simplex cubature Kalman filter for bearings-only measurements[J]. IET Science, Measurement Technology, 2016, 10(4):370-374.[24] XU B, ZHANG P, WEN H Z. Stochastic stability and performance analysis of cubature Kalman filter[J]. Neurocomputing, 2016, 186(C):218-227.
文章导航

/