电子电气工程与控制

基于周期平均的固定舵双旋火箭弹控制方法

  • 郭致远 ,
  • 姚晓先 ,
  • 张鑫
展开
  • 北京理工大学 宇航学院, 北京 100081

收稿日期: 2017-04-06

  修回日期: 2017-08-07

  网络出版日期: 2017-08-07

Control method for a class of fixed-canard dual-spin rockets based on period average

  • GUO Zhiyuan ,
  • YAO Xiaoxian ,
  • ZHANG Xin
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2017-04-06

  Revised date: 2017-08-07

  Online published: 2017-08-07

摘要

对一类具有固定舵偏角的双旋弹,基于周期平均的思想推导了平均控制力幅值与执行机构电机旋转轨迹的关系,并据此提出一种使周期平均控制力幅值和方向可调的方案,分析了该方案对执行机构电机的性能要求。以双旋火箭弹为模型,通过七自由度(DOF)弹道仿真,对双旋火箭弹在该方案下的侧向修正能力、高度控制效果和落点控制效果分别进行了分析以验证该方案的可行性。结果表明:相比于在飞行过程中若干次使舵面停于所需方位的传统控制方式,基于周期平均的控制策略可以使平均控制力幅值和方向连续变化,实现固定舵双旋弹制导与控制。

本文引用格式

郭致远 , 姚晓先 , 张鑫 . 基于周期平均的固定舵双旋火箭弹控制方法[J]. 航空学报, 2017 , 38(12) : 321307 -321307 . DOI: 10.7527/S1000-6893.2017.321307

Abstract

A control method for a class of fixed-canard dual-spin rockets is proposed to adjust the magnitude and the direction of the average control force. The method is presented according to the relationship between the magnitude of the average control force and the spinning trajectory of the actuator motor. This relationship is calculated based on the idea of the period average. Based on a simulation of 7 Degrees of Freedom (DOF) trajectory, the lateral correction ability and the effects of the height control and the drop point control of the fixed-canard dual-spin rocket are analyzed to verify the feasibility of the control method proposed. The results show that in contrast to the traditional control method of holding the canard to the direction needed several times during the flight, the control method based on the period average can continuously adjust the magnitude and the direction of the average control force, so as to realize the guidance and control of the fixed-canard dual-spin rocket.

参考文献

[1] REGAN F J, SMITH J. Aeroballistics of a terminally corrected spinning projectile (TCSP)[J]. Journal of Spacecraft and Rockets, 1975, 12(12):733-738.[2] GAGNON E, LAUZON M. Low cost guidance and control solution for in-service unguided 155 mm artillery shell:DRDC Valcartier TR 2008-333[R]. Quebec:Defence Research and Development Canada, 2009.[3] COSTELLO M, PETERSON A. Linear theory of a dual-spin projectile in atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(5):789-797.[4] WERNERT P, LEOPOLD F, LEHMANN L, et al. Wind tunnel tests and open-loop trajectory simulations for a 155 mm canards guided spin stabilized projectile[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA, 2008:1-17.[5] THEODOULIS S, MOREL Y, WERNERT P. Trajectory-based accurate linearization of the 155mm spin-stabilized projectile dynamics[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2009:1-21.[6] WERNERT P. Stability analysis for canard guided dual-spin stabilized projectiles[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2009:1-24.[7] SPAGNI J, THEODOULIS S, WERNERT P. Flight control for a class of 155 mm spin-stabilized projectile with reciprocating canards[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2012:1-24.[8] THEODOULIS S, GASSMANN V, BRUNNER T, et al. Robust bank-to-turn autopilot design for a class of 155mm spin-stabilized canard-guided projectiles[C]//AIAA Atmospheric Flight Mechanics(AFM) Conference. Reston, VA:AIAA, 2013:1-24.[9] THEODOULIS S, GASSMANN V, WERNERT P, et al. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):517-531.[10] SÉVE F, THEODOULIS S, WERNERT P, et al. Pitch/yaw channels control design for a 155mm projectile with rotating canards, using a H loop-shaping design proce-dure[C]//AIAA Guidance, Navigation, and Control Conference. Reston, VA:AIAA, 2014:1-24.[11] THEODOULIS S, SÉVE F, WERNERT P. Robust gain-scheduled autopilot design for spin-stabilized projectiles with a course-correction fuze[J]. Aerospace Science and Technology, 2015, 42:477-489.[12] MURPHY C H. Symmetric missile dynamic instabilities[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(5):464-471.[13] ZHU D L, TANG S J, GUO J, et al. Flight stability of a dual-spin projectile with canards[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(4):703-716.[14] 王钰, 王晓鸣, 程杰, 等. 基于等效力方法的双旋弹侧向控制力落点响应分析[J]. 兵工学报, 2016, 37(8):1379-1387. WANG Y, WANG X M, CHEN J, et al. Analysis on impact point response of a dual-spin projectile with lateral force based on equivalent force method[J]. Acta Armamentarii, 2016, 37(8):1379-1387(in Chinese).[15] 李伟, 王志刚. 双旋制导火箭弹运动特性分析[J]. 固体火箭技术, 2014, 37(2):143-149. LI W, WANG Z G. Analysis of motion characteristics for dual-spin projectile[J]. Journal of Solid Rocket Technology, 2014, 37(2):143-149(in Chinese).[16] 张冬旭. 可控滚转二维弹道修正机构的研究[D]. 北京:北京理工大学, 2015:71-96. ZHANG D X. Research on the rolling controlled two-dimensional trajectory correction mechanism[D]. Beijing:Beijing Institute of Technology, 2015:71-96(in Chinese).[17] 许诺, 于剑桥, 王亚飞, 等. 固定翼双旋弹动力学特性分析[J]. 兵工学报, 2015, 36(4):602-609. XU N, YU J Q, WANG Y F, et al. Analysis of dynamic characteristics of fixed-wing dual-spin projectiles[J]. Acta Armamentarii, 2015, 36(4):602-609(in Chinese).[18] 许诺, 于剑桥, 王亚飞. 基于周期平均的固定翼双旋弹弹道修正方法[J]. 航空学报, 2015, 36(9):2892-2899. XU N, YU J Q, WANG Y F. Trajectory correcting method of fixed-canard dual-spin projectiles based on period average[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2892-2899(in Chinese).[19] 韩子鹏. 弹箭外弹道学[M]. 北京:北京理工大学出版社, 2014:145-270. HAN Z P. Exterior ballistics of projectiles and rockets[M]. Beijing:Beijing Institute of Technology Press, 2008:145-270(in Chinese).[20] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2008:29-55. QIAN X F, LIN R X, ZHAO Y N. Missile flight mechanics[M]. Beijing:Beijing Institute of Technology Press, 2008:29-55(in Chinese).
文章导航

/