材料工程与机械制造

钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能的影响

  • 卞红 ,
  • 胡胜鹏 ,
  • 宋晓国 ,
  • 周志强 ,
  • 冯吉才
展开
  • 1. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001;
    2. 哈尔滨工业大学(威海) 山东省特种焊接技术重点实验室, 威海 264209

收稿日期: 2017-05-08

  修回日期: 2017-07-31

  网络出版日期: 2017-07-31

基金资助

国家自然科学基金(51405099);国家科技重大专项(2014ZX04001131)

Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AgCu/ZrO2 joint

  • BIAN Hong ,
  • HU Shengpeng ,
  • SONG Xiaoguo ,
  • ZHOU Zhiqiang ,
  • FENG Jicai
Expand
  • 1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
    2. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology(Weihai Extension), Weihai 264209, China

Received date: 2017-05-08

  Revised date: 2017-07-31

  Online published: 2017-07-31

Supported by

National Natural Science Foundation of China(51405099); National Science and Technology Major Project(2014ZX04001131)

摘要

采用AgCu钎料实现了Ti60合金和ZrO2陶瓷的钎焊连接。使用扫描电子显微镜(Scanning Electron Microscope,SEM)、能谱仪(Energy Dispersive Spectrometer,EDS)和X射线衍射仪(X-Ray Diffractometer,XRD)等分析测试手段,对不同钎焊温度下获得的接头界面组织结构进行了分析。研究表明,Ti60/AgCu/ZrO2接头典型界面组织为:Ti60合金/α-Ti+Ti2Cu扩散层/TiCu+TiCu2/Ag(s,s)+Cu(s,s)/Ti3Cu3O反应层/TiO反应层/ZrO2陶瓷。随着钎焊温度的升高,α-Ti+Ti2Cu扩散层、TiCu+TiCu2层、Ti3Cu3O层及TiO层厚度均逐渐增加,颗粒状Ti-Cu化合物不断长大,Ag(s,s)和Cu(s,s)含量逐渐减少。剪切试验表明,在钎焊温度为900℃、保温时间为10 min条件下获得的接头室温抗剪强度最高为124.9 MPa,500℃和600℃抗剪强度分别为83.0 MPa和30.2 MPa。断口分析表明:接头沿ZrO2陶瓷/钎料界面和靠近该界面的钎缝发生断裂。

本文引用格式

卞红 , 胡胜鹏 , 宋晓国 , 周志强 , 冯吉才 . 钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能的影响[J]. 航空学报, 2017 , 38(12) : 421402 -421402 . DOI: 10.7527/S1000-6893.2017.421402

Abstract

Reliable brazing of Ti60 alloy and ZrO2 ceramic was successfully achieved using AgCu filler metal. The interfacial microstructure and reaction products of Ti60/AgCu/ZrO2 joints brazed at different temperatures were investigated by the Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS) and X-Ray Diffractometer (XRD). Results show that the typical interfacial microstructure of the Ti60/AgCu/ZrO2 joint was Ti60 alloy/α-Ti+Ti2Cu diffusion layer/TiCu+TiCu2/Ag(s,s)+Cu(s,s)/Ti3Cu3O layer/TiO layer/ZrO2 ceramic. With the increase of the brazing temperature, the thickness of the diffusion layer of α-Ti+Ti2Cu, TiCu+TiCu2 layers, Ti3Cu3O layer and TiO layer adjacent to the ZrO2 ceramic increased gradually, and the granular Ti-Cu IMCs grew gradually, meanwhile the content of the Ag-based solid solution and Cu-based solid solution decreased. The shear test indicates that the joint brazed at 900℃ for 10 min exhibited the highest shear strength of 124.9 MPa tested at room temprature, and the joint tested at 500℃ and 600℃ exhibited the shear strength of 83.0 MPa and 30.2 MPa, respectively. Typical fracture analysis displays that the brazed joint tended to fracture at the interface between the ZrO2 ceramic and the brazing seam, and in the brazing seam adjacent to the interface.

参考文献

[1] 陶春虎, 刘庆瑔, 曹春晓, 等. 航空用钛合金的失效及其预防[M]. 北京:国防工业出版社, 2002. TAO C H, LIU Q Q, CAO C X, et al. Failure and prevention of aeronautical titanium alloy[M]. Beijing:National Defence Industry Press, 2002(in Chinese).[2] 郭萍, 洪权, 曾立英, 等. 固溶处理对Ti-600高温钛合金蠕变性能的影响[J]. 热加工工艺, 2006, 35(14):50-52. GUO P, HONG Q, ZENG L Y, et al. Effect of solution heat treatment on creep property of Ti-600 high temper-ature titanium alloy[J]. Hot Working Technology, 2006, 35(14):50-52(in Chinese).[3] 蔡建明, 李臻熙, 马济民, 等. 航空发动机用600℃高温钛合金的研究与发展[J]. 材料导报, 2005, 19(1):50-53. CAI J M, LI Z X, MA J M, et al. Research and development of 600℃ high temperature titanium alloys for aeroengine[J]. Materials Review, 2005, 19(1):50-53(in Chinese).[4] 王清江, 刘建荣, 杨锐, 等. 一种高热强性、高热稳定性的高温钛合金:ZL200710011771.0[P]. 2008-01-16. WANG Q J, LIU J R, YANG R, et al. A high temperature strength and high heat stability:ZL200710011771.0[P]. 2008-01-16(in Chinese).[5] SMORYGO O, KIM J S, KIM M D, et al. Evolution of the interlayer microstructure and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints[J]. Materials Letters, 2007, 61:613-616.[6] CHUANG T H, YEH M S, CHAI Y H. Brazing of zirconia with AgCuTi and SnAgTi active filler metals[J]. Metallurgical and Materials Transactions A, 2000, 31(6):1591-1597.[7] FENG J C, DAI X Y, WANG D, et al. Microstructure evolution and mechanical properties of ZrO2/TiAl joints vacuum brazed by Ag-Cu filler metal[J]. Materials Science and Engineering:A, 2015, 639:739-746.[8] TEKELI S. The solid solubility limit of Al2O3 and its effect on densification and microstructural evolution in cubic-zirconia used as an electrolyte for solid oxide fuel cell[J]. Materials and Design, 2007, 28(2):713-716.[9] SINGH M, SHPARGEL T P, ASTHANA R. Braze oxidation behavior and joint microstructure in YSZ/steel joints made using palladium brazes for SOFC applications[J]. Materials Science and Engineering:A, 2008, 485(1):695-702.[10] HAO H Q, WANG Y L, JIN Z H, et al. Joining of zirconia to zirconia using AgCuTi filler metal[J]. Journal of Materials Processing Technology, 1995, 52(2):238-247.[11] TIAN X Y, FENG J C, SHI J M, et al. Brazing of ZrB2-SiC-C ceramic and GH99 superalloy to form reticular seam with low residual stress[J]. Ceramics International, 2015, 41(1):145-153.[12] LIU J K, CAO J, SONG X G, et al. Evaluation on diffusion bonded joints of TiAl alloy to Ti3SiC2 ceramic with and without Ni interlayer:Interfacial microstructure and mechanical properties[J]. Materials and Design, 2014, 57(5):592-597.[13] LAN L, REN Z M, YU J B, et al. Microstructure and mechanical properties of partial transient liquid phase bonded Si3N4-DZ483 superalloy joints[J]. Materials Letters, 2014, 121:223-236.[14] LIU Y H, HU J D, SHEN P, et al. Microstructural and mechanical properties of jointed ZrO2/Ti-6Al-4V alloy using Ti33Zr17Cu50 amorphous brazing filler[J]. Materials and Design, 2013, 47(9):281-286.[15] LIU Y H, HU J D, ZHANG Y P, et al. Joining of zirconia and Ti-6Al-4V using a Ti-based amorphous filler[J]. Journal of Materials Science and Technology, 2011, 27(7):653-658.[16] LIU Y H, HU J D, SHEN P, et al. Effects of fabrication parameters on interface of zirconia and Ti-6Al-4V joints using Zr55Cu30Al10Ni5 amorphous filler[J]. Journal of Materials Engineering and Performance, 2013,22(9):2602-2609.[17] CAO J, SONG X G, LI C, et al. Brazing ZrO2 ceramic to Ti-6Al-4V alloy using NiCrSiB amorphous filler foil:Interfacial microstructure and joint properties[J]. Materials Characterization, 2013, 81:85-91.[18] DAI X Y, CAO J, LIU J Q, et al. Interfacial reaction behavior and mechanical characterization of ZrO2/TC4 joint brazed by Ag-Cu filler metal[J]. Materials Science and Engineering:A, 2015, 646:182-189.[19] BAKER H. ASM handbook:Alloy phase diagrams[M].10th ed. Cleveland, OH:ASM International, 1992:2-181.[20] SANTELLA M L, PAK J J. Brazing titanium-vapor-coated zirconia[J]. Welding Journal-Welding Research Supplement, 1993, 72(4):165-172.[21] 黄小丽, 林实, 肖纪美. 金属-陶瓷钎焊后ZrO2变色现象的研究[J]. 兵器材料科学与工程, 1999, 22(6):40-43. HUANG X L, LIN S, XIAO J M. Investigation on discoloration of ZrO2 after being brazed with metals[J]. Ordnance Material Science and Engineering, 1999, 22(6):40-43(in Chinese).[22] LIU G W, LI W, QIAO G J, et al. Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing[J]. Journal of Alloys and Compounds, 2009, 470(1-2):163-167.[23] KELKAR G P, SPEAR K E, CARIM A H. Thermodynamic evaluation of reaction products and layering in brazed alumina joints[J]. Journal of Materials Research, 1994, 9(9):2244-2250.
文章导航

/