流体力学与飞行力学

防冰疏水微结构表面的设计

  • 王津 ,
  • 杨辉 ,
  • 王莉平 ,
  • 董璞
展开
  • 北京航空精密机械研究所 精密制造技术航空科技重点实验室, 北京 100076

收稿日期: 2017-05-25

  修回日期: 2017-07-18

  网络出版日期: 2017-07-18

基金资助

航空科学基金——青年基金(2016ZE43010)

Surface design for anti-icing and hydrophobic micro-structures

  • WANG Jin ,
  • YANG Hui ,
  • WANG Liping ,
  • DONG Pu
Expand
  • Key Laboratory of Science and Technology on Precision Manufacturing Technology, Beijing Precision Engineering Institute for Aircraft Industry, Beijing 100076, China

Received date: 2017-05-25

  Revised date: 2017-07-18

  Online published: 2017-07-18

Supported by

Aeronautical Science Foundation for Young Scholars of China (2016ZE43010)

摘要

微结构表面具有出色的防水自净性能以及减阻性能,但目前超疏水微结构表面设计制备思路欠缺系统性,很多制备方法也比较复杂,在工程实践方面缺乏指导性。从工程制备的角度,概述了微结构表面设计的经典理论模型和国内外对微结构几何设计的理论研究,探究常用工程材料的理论本征接触角,通过力学平衡分析方法计算仿真确定疏水微观结构几何尺寸、几何截面外形,提出截面线长度及尺寸系数两个疏水微结构设计的参数,归纳了设计疏水微结构的流程,为制备疏水微结构或微结构模具提供理论基础。

本文引用格式

王津 , 杨辉 , 王莉平 , 董璞 . 防冰疏水微结构表面的设计[J]. 航空学报, 2017 , 38(S1) : 721522 -721522 . DOI: 10.7527/S1000-6893.2017.721522

Abstract

Micro-structure surfaces have excellent performances in waterproof self-purification and drag reduction. However, current approaches for preparation of hydrophobic surfaces are complex and not systematic, limiting their further development and wider application. From the perspective of engineering preparation, this paper summarizes the classical theoretical models for the design of micro-structure surfaces and the theoretical studies on the geometrical design of microstructures at home and abroad. Intrinsic contact angle of common engineering materials through balance force analysis and computational simulation, determining the size of hydrophobic microstructure, the shape of the cross section is explored. Section line length and two size coefficients of designing hydrophobic microstructure and summarize the design process of hydrophobic microstructures are put forward, providing a theoretical foundation for the preparation of hydrophobic microstructure or mould.

参考文献

[1] 刘森云, 沈一洲. 液滴撞击超疏水表面的能量耗散机制[J]. 航空学报, 2017, 38(2): 96-104. LIU S Y, SHEN Y Z. Energy dissipation mechanism of droplets impacting super-hydrophobic surfaces[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 96-104(in Chinese).
[2] 杨元华, 陈时锦. 微结构表面金刚石车削加工过程中快速伺服刀架的控制[J]. 航空学报, 2008, 29(1): 246-250. YANG Y H, CHEN S J. Control of fast tool servo when diamond turning micro-structured surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 246-250(in Chinese).
[3] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial &Engineering Chemistry, 1936, 28(8): 988-994.
[4] 胡福增.材料表面与界面[M]. 上海:华东理工大学出版社, 2016: 15-16. HU F S. Material surface and interface[M]. Shanghai: East China University of Science and Technology Press, 2016: 15-16(in Chinese).
[5] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[6] NOSONOVSKY M, BHUSHAN B. Patterned nonadhesive surfaces:superhydrophobicity and wetting regime transitions[J]. Langmuir,2008, 24(4): 1525-1533.
[7] ONER D, MCCARTHY T J. Ultrahydrophobic surfaces. effects of topography length scales on wettability[J].Langmuir, 2000, 16(20): 7777-7782.
[8] YOSHIMITSU Z, NAKAJIMA A, WATANABE T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18(15): 5818-5822.
[9] EXTRAND C W. Model for contact angles and hystere-sis on rough and ultraphobic surfaces[J]. Langmuir,2002, 18(21): 7991-7999.
[10] PATANKAR N A. Transition between superhydrophobic states on rough surface[J]. Langmuir, 2004, 20(17): 7097-7102.
[11] MARMUR A. Wetting on Hydrophobic rough surfaces: To be heterogenerous or not to be[J]. Langmuir, 2003, 19(20): 8343-8348.
[12] ORCHERON F, MONSON PA. Mean-field theory of liquid ropletson roughened solid surfaces: Application to super hydrophobicity[J]. Langmuir, 2006, 22(4): 1595-1601.
[13] NOSONOVSKY M, BHUSHAN B. Roughness optimization for biomi-metic super hydrophobic surfaces[J]. Microsystem Technologies, 2005, 11(7): 535-549.
[14] EXTRAND C W. Contact angles and their hysteresis as a measure of liquid-solid adhesion[J]. Langmuir, 2004, 20(10): 4017-4021.
[15] 赵亚溥.表面与界面物理学[M]. 北京:科学出版社,2016:173-175. ZHAO Y P. Surface and interface physics [M]. Beijing: Science Press, 2016: 173-175(in Chinese).
[16] 吴人洁.高聚物的表面与界面[M]. 北京:科学出版社,1998:120-124. WU R J. Surface and interface of polymers[M]. Beijing: Science Press, 1998: 120-124(in Chinese).
[17] 李恒德,肖纪美. 材料表面与界面[M]. 北京:清华大学出版社,1990: 98-100. LI H D, XIAO J M. Surface and interface of materials[M]. Beijing: Tsinghua University Press, 1990: 98-100 (in Chinese).
[18] 胡福增,陈国荣,杜永娟. 材料表界面[M]. 上海:华东理工大学出版社,2001: 90-93. HU F S, CHEN G R, DU Y J. Material table interface[M]. Shanghai: East China University of Science and Technology Press, 2001: 90-93 (in Chinese).
[19] 克拉克 D T,菲斯特 W J. 聚合物表面[M]. 北京:化学工业出版社,1985: 221-224. CLARK D T, FISCHER W J. Polymer surface[M]. Beijing: Chemical Industry Press, 1985: 221-224(in Chinese).
[20] ONDA T, SHIBUICHI S, SATOH N, TSUJⅡ K. Super-water-repellent fractal surfaces[J]. Langmuir, 1996, 12(9): 2125-2127.

文章导航

/