固体力学与飞行器总体设计

基于CR理论的大柔性机翼几何非线性结构建模

  • 王伟 ,
  • 段卓毅 ,
  • 耿建中 ,
  • 张健 ,
  • 李军府
展开
  • 中航工业第一飞机设计研究院, 西安 710089

收稿日期: 2017-05-25

  修回日期: 2017-07-04

  网络出版日期: 2017-07-04

基金资助

省部级项目

Modelling of geometrically nonlinear structure of large flexible wing based on CR theory

  • WANG Wei ,
  • DUAN Zhuoyi ,
  • GENG Jianzhong ,
  • ZHANG Jian ,
  • LI Junfu
Expand
  • AVIC the First Aircraft Institute, Xi'an 710089, China

Received date: 2017-05-25

  Revised date: 2017-07-04

  Online published: 2017-07-04

Supported by

Provincial/Ministerial Level Project

摘要

大柔性机翼在气动载荷的作用下,将产生显著的弹性变形,常规线弹性理论的小变形假设不再成立,需要采用能够考虑几何非线性效应的结构模型进行求解。基于CR(Co-Rotational)共旋转有限元理论,把几何非线性大变形分解为刚体的旋转和平移及局部坐标系下的弹性变形,建立了适用于大柔性机翼几何非线性变形描述的结构模型。以大柔性悬臂梁为例,采用载荷增量法,研究了集中弯矩作用下的非线性变形特征,对静力学方法进行了验证,并讨论了耦合加载几何非线性变形特征;以类"太阳神"太阳能布局无人机(UAV)为例,研究了其几何非线性大变形特性。

本文引用格式

王伟 , 段卓毅 , 耿建中 , 张健 , 李军府 . 基于CR理论的大柔性机翼几何非线性结构建模[J]. 航空学报, 2017 , 38(S1) : 721544 -721544 . DOI: 10.7527/S1000-6893.2017.721544

Abstract

The large flexible wing under aerodynamic loading is subject to distinct large deformation. Therefore, the assumption of small deformation according to the classical linear theory no longer holds, and structural modeling of such wing should consider the geometrically nonlinear effect. Based on Co-Rotational (CR) theory, the geometrically nonlinear large deformation is resolved into rotation and translation of the rigid body and elastic deformation described in the local coordination system. The structural model for description of the geometrically nonlinear deformation of the large flexible wing is constructed in this paper. With the large flexible camber beam as an example, the geometric nonlinear large deformation under the moment load is studied using the increment iterated method. The static method is validated, and the effect of geometrical nonlinear deformation due to coupling load is discussed. The geometrical nonlinear large deformation of a solar Unmanned Aerial Vehicle (UAV) with the layout similar to "Helios" is also studied.

参考文献

[1] KIRK F, BOB C. Pathfinder solar-powered aircraft flight performance: AIAA-1998-4446[R]. Reston, VA: AIAA, 1998.
[2] YOUNGBLOOD J W. Design of long endurance unmanned airplanes incorporating solar and fuel cells propulsion: AIAA-1984-1430[R]. Reston, VA: AIAA,1984.
[3] CESTINO E. Design of very long-endurance solar powered UAV[D]. Torino: Politecnico di Torino, 2006.
[4] ROMEO G, FRULLA G, CESTINO E, et al. HELIPLAT: Design, aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6): 1505-1520.
[5] GARBE G, MONTGOMERY E E. An overview of NASA's solar sail propulsion project[C]//39th AIAA PAPER/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, VA: AIAA, 2003.
[6] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the Helios prototype aircraft mishap[R]. Hampton, VA: Langley Research Center, NASA, 2004.
[7] HANNES R. Fly around the world with a solar powered airplane: AIAA-2008-8954[R]. Reston, VA: AIAA, 2008.
[8] RAFAEL P, JOSEBA M, ROBERT C. Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft[J]. AIAA Journal, 2010, 48(11): 2648-2659.
[9] HODGES D H, DOWELL E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades: NASA TN D-7818[R]. Washington, D.C.: NASA, 1974.
[10] HODGES D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11): 1253-1273.
[11] PATIL M J. Nonlinear aeroelastic analysis, flight dynamics and control of a complete aircraft[D]. Atlanta, GA: Georgia Institute of Technology, 1999.
[12] PATIL M J, DOWELL E H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings: AIAA-2000-1448[R]. Reston, VA: AIAA, 2000,
[13] WEMPNER G A. Finite elements, finite rotations and small strains of flexible shells[J]. International Journal of Solid and Structures, 1969, 5(2): 117-153.
[14] BELYTSCHKO T, SCHWER L. Large displacement, transient analysis of space frames[J]. International Journal for Numerical Methods in Engineering, 1977, 11(1): 65-84.
[15] BELYTSCHKO T, HSEIH B J. Nonlinear transient finite element analysis with convected coordinates[J]. International Journal for Numerical Methods in Engineering, 1973, 7(9): 255-271.
[16] BELYTSCHKO T, GLAUM L W. Application of higher order corotational stretch theories to nonlinear finite elements analysis[J]. Computers and Structures, 1979, 10(1): 175-182.
[17] CRISFIELD M A, GALVANETTO U, JELENIC G. Dynamics of 3-D co-rotational beams[J]. Computational Mechanics, 1997, 20(6): 507-519.
[18] CRISFIELD M A. Nonlinear finite element analysis of solid and structures, Volume 2[M]. New York: John Wiley & Sons, 1997.
[19] 吕和祥,朱菊芬,马莉颖. 大转动梁的几何非线性分析讨论[J]. 计算结构力学及应用, 1995, 12(4): 485-490. LV H X, ZHU J F, MA L Y. Geometrically nonlinearity analysis of large rotation beams[J]. Compute Structural Mechanical and Application, 1995, 12(4): 485-490 (in Chinese).
[20] 蔡松柏, 沈蒲生. 大转动平面梁有限元分析的共旋转坐标法[J].工程力学, 2006, 23(增刊1): 69-72. CAI S B, SHEN P S. CR approach for finite element analysis of 2-D beams with large rotation[J]. Engineering Mechanics,2006, 23(supplement 1): 69-72 (in Chinese).

文章导航

/