流体力学与飞行力学

再入弹头三维非对称烧蚀外形模拟

  • 周述光 ,
  • 国义军 ,
  • 贺立新 ,
  • 刘骁
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2017-05-08

  修回日期: 2017-06-29

  网络出版日期: 2017-06-29

基金资助

国家重点研发计划(2016YFA0401200)

Simulation of 3D asymmetric ablation shape of reentry missile

  • ZHOU Shuguang ,
  • GUO Yijun ,
  • HE Lixin ,
  • LIU Xiao
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2017-05-08

  Revised date: 2017-06-29

  Online published: 2017-06-29

Supported by

National Key Research and Development Program of China(2016YFA0401200)

摘要

远程战略导弹再入大气层,热环境十分严酷,烧蚀量很大,外形呈现非对称性。烧蚀变形、质量引射和表面烧蚀花纹反作用于气动力、气动热及表面温度场。它们之间的相互作用十分复杂,影响落点精度。依据等效转换,将有迎角、侧滑角的绕流转换成总迎角绕流。对于不同子午面,将其变换到纵向坐标轴沿等效流动方向的气流坐标系,通过等效迎角化为零迎角绕流。采用Monte-Carlo统计方法,生成伪随机数,对弹头表面粗糙度随机抽样,表征不同子午线上转捩初始位置的随机分布。改进了零迎角烧蚀外形计算方法,拓展了其应用范围,并通过与能反映转捩点移动方向的松耦合计算策略相结合,采用数值求解烧蚀外形方程,成功模拟了小倾角再入过程中端头非对称烧蚀外形。

本文引用格式

周述光 , 国义军 , 贺立新 , 刘骁 . 再入弹头三维非对称烧蚀外形模拟[J]. 航空学报, 2017 , 38(12) : 121397 -121397 . DOI: 10.7527/S1000-6893.2017.121397

Abstract

Strategic missiles are heated by hypersonic gas while they are reenter into the earth's atmosphere at small attitude angles. The thermal environment is so harsh that the loss of surface material from spacecraft through evaporation or melting caused by friction with the atmosphere is a considerable amount of ablation, thereby forming a visible asymmetric shape. Shape change, matter inject to boundary layer and a number of different types of patterns by ablation will affect the aerodynamics, aerothermodynamics and temperature distribution in the matters. Thermal environment, ablation, and the shape are the cause and effect for each other, and therefore make the impact scatter to spread out. According to equivalent transform analysis, the flow field relative to the vehicle at some angles of attack and sideslip can be equal to that at a total angle of incidence. The vertical axis at a meridian plane is transformed to the flow direction, wherefore the flow flied is at the zero angle of attack. Random sampling of surface roughs is conducted with Monte-Carlo statistical measure to simulate the random distribution of the transition regions at different circumferential positions. The rough sizes are created by the randomizer. The calculation procedure has been improved with these techniques, and the loosely coupled simulation that can exhibit the movement of the transition point towards the vertex of the nosetip is also employed. The numerical calculation method is also used to sole the nonlinear partial differential equation for the ablative shape. The irregular shape of the nosetip of ballistic missiles at small incidence angle in reentry into the earth's atmosphere can be successfully simulated with the methods applied proposed.

参考文献

[1] THYSON N, NEURINGER J, PALLONE A. Nose tipe change predictions during atmospheric re-entry[C]//AIAA 5th Thermophysics Conference. Reston, VA:AIAA, 1970.[2] BAKER R L. Low temperature ablator nosetip shape change at angle of attack[C]//AIAA 10th Aerospace Sciences Meeting. Reston, VA:AIAA, 1972.[3] 李素循. 烧蚀形状的地面实验模拟[C]//航空航天工业部科学技术司论文集, 1990:379-384. LI S X. Wind tunnel tests simulate ablation shapes[C]. Proceedings of Department of Science and Technology,Ministry of Aerospace Industry, 1990:379-384(in Chinese).[4] CROWELL P G. Finite difference schemes for the solution of the nosetip shape change equations:SAMSO-TR-76-8[R]. Philadelphia:General Electric Company, 1976.[5] CHIN J H. Shape change and conduction for nosetips at angle of attack[C]//7th Fluid and Plasma Dynamics Conference. Reston, VA:AIAA, 1974.[6] DIRLING R B. Asymmetric nosetip shape change during atmospheric entry[C]//AIAA 12th Thermophysics Conference. Reston, VA:AIAA, 1977.[7] OTEY G R, ENGLISH E A. High-β re-entry vehicle recover[J]. Spacecraft,1977, 14(5):290-293.[8] HALL D W, NOWLAN D T. Aerodynamics of ballistic re-entry vehicles with asymmetric nosetips[J]. Spacecraft, 1978, 15(1):55-61.[9] 姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京:国防工业出版社, 2003. JIANG G Q, LIU L Y. Heat transfor of hypersonic gas and ablation thermal protection[M]. Beijing:National Defense Industry Press, 2003(in Chinese).[10] 黄志澄. 航天空气动力学[M]. 北京:中国宇航出版社, 1994. HUAGN Z C. Aerospace aerodynamics[M]. Beijing:China Astronautic Publishing House, 1994(in Chinese).[11] 薛成位, 王喜军, 张文杰, 等. 战略弹头气动攻关论文集[M]. 绵阳:中国空气动力研究与发展中心, 1990. XUE C W, WANG X J, ZHANG W J, et al. Proceedings of strategic missile's aerodynamics tackled[M]. Mianyang:China Aerodynamics Research and Development Center, 1990(in Chinese).[12] 蔡金狮. 再入体滚转共振与小不对称气动力[J]. 空气动力学学报, 1985(3):72-81. CAI J S. Roll resonance and small asymmetrical aerodynamics of reentry body[J]. Acta Aerodynamica Sinica, 1985(3):72-81(in Chinese).[13] 黄兴中, 蔡慧娟. 小不对称体滚动力矩风洞实验研究[J]. 空气动力学学报, 1985(2):69-73. HUANG X Z, CAI H J. Roll moment research of small asymmetrical body with wind tunnel test[J]. Acta Aerodynamica Sinica, 1985(2):69-73(in Chinese).[14] 白葵, 冯明溪, 付光明. 小不对称再入体滚转气动力测量技术[J]. 流体力学实验与测量, 2002, 16(3):63-67. BAI K, FENG M X, FU G M. Experimental technique for rolling aerodynamic of slight asymmetric re-entry body[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3):63-67(in Chinese).[15] 赵俊波, 付增良, 梁斌, 等. 再入弹头小不对称俯仰气动特性测量技术研究[J]. 实验流体力学, 2015, 29(5):55-59. ZHAO J B, FU Z L, LIANG B, et al. Research on the wind tunnel test techniques for micro-pitching-aerodynamics of re-entry body[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5):55-59(in Chinese).[16] 张毅, 苗育红, 周江华. 烧/侵蚀耦合效应及其对再入体落点的影响[J]. 飞行力学, 1997, 15(2):91-96. ZHANG Y, MIAO Y H, ZHOU J H. The influence of the coupled ablation/erosion effect on reentry-body impact-point[J]. Flight Dynamics, 1997, 15(2):91-96(in Chinese).[17] 陆海波, 陈伟芳, 袁雷, 等. 再入体碳基材料烧蚀特性分析与工程计算[J]. 弹道学报, 2008, 2(3):107-110. LU H B, CHEN W F, YUAN L, et al. Ablation analysis and engineering calculation on carbon based material of reentry vehicles[J]. Journal of Ballistics, 2008, 2(3):107-110(in Chinese).[18] 袁湘江, 杨茂昭, 潘梅林. 小不对称烧蚀外形的典型化处理方法[J]. 空气动力学学报, 1997, 15(3):386-392. YUAN X J, YANG M Z, PAN M L. Typical processing method of slight asymmetric ablative shape[J]. Acta Aerodynamica Sinica, 1997, 15(3):386-392(in Chinese).[19] DIRLING R B. Performance technology program(PTP-SⅡ) Vol. VI. A statistical model of nosetip shape change for reentry vehicles:BMO-TR-80-53[R]. Irvine:Science Application, Inc., 1980.[20] 陈自发, 张晓晨, 王振峰, 等. 高超声速飞行器碳基头锥烧蚀外形计算[J]. 航空学报, 2016, 37(S1):S38-S45. CHEN Z F, ZHANG X C, WANG Z F, et al. Hypersonic aircraft's carbon-based nose ablation shape calculation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S38-S45(in Chinese).[21] 黄振中. 烧蚀端头的瞬变外形及内部温度分布[J]. 空气动力学学报, 1981(1):53-65. HUANG Z Z. Transient changing shape and temperature distribution of ablative nosetip[J]. Acta Aerodynamica Sinica, 1981(1):53-65(in Chinese).[22] 国义军, 童福林, 桂业伟. 烧蚀外形方程差分计算方法研究(Ⅱ:耦合计算)[J].空气动力学学报, 2010, 28(4):441-445. GUO Y J, TONG F L, GUI Y W. Finite difference schemes for solution of the nosetip shape change equation(Part Ⅱ, coupling calculation)[J]. Acta Aerodynamica Sinica, 2010, 28(4):441-445(in Chinese).[23] 张志成. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003. ZHANG Z C. Aerothermal heating and thermal protection of spacecraft at hypersonic conditions[M]. Beijing:National Defend Industry Press, 2003(in Chinese).[24] HALL D W. The three-dimensional shock and pressure (3DSAP) approximate flow field technique:SAMSO-TR-77-C145[R]. Philadelphia:General Electric Company, 1977.
文章导航

/