电子电气工程与控制

基于复杂网络的空中交通特征与延误传播分析

  • 武喜萍 ,
  • 杨红雨 ,
  • 韩松臣
展开
  • 1. 四川大学 视觉合成图形图像技术国防重点学科实验室, 成都 610065;
    2. 四川大学 空天科学与工程学院, 成都 610065

收稿日期: 2017-05-25

  修回日期: 2017-06-26

  网络出版日期: 2017-06-26

基金资助

国家自然科学基金(71573184)

Analysis of properties and delay propagation of air traffic based on complex network

  • WU Xiping ,
  • YANG Hongyu ,
  • HAN Songchen
Expand
  • 1. National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China;
    2. School of Aeronautics & Astronautics, Sichuan University, Chengdu 610065, China

Received date: 2017-05-25

  Revised date: 2017-06-26

  Online published: 2017-06-26

Supported by

National Natural Science Foundation of China(71573184)

摘要

空中交通流量管理主要集中在尾随间隔、空中等待等局部战术空中交通流量调配,对空中交通流量整体运行规律、延误传播和整体解决的研究较少。航空运输网络是一个复杂系统,从复杂网络理论角度对航空运输网络进行研究很有必要。首先,分析了空中交通流量网络的度、度分布、权值、权分布、流量、容量、延误等静态特征;然后,提出了空中交通流量网络整体效能评估方法,使用选择性攻击和随机攻击方法分析了空中交通流量网络的抗毁性,基于负荷容量级联失效模型和病毒传播模型与空中交通延误传播的相似性建立了空中交通延误传播模型,最后,使用实际运行数据验证了空中交通流量网络的特征与延误传播模型的有效性,该研究可以为大范围空中流量管理提供决策支持。

本文引用格式

武喜萍 , 杨红雨 , 韩松臣 . 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017 , 38(S1) : 721473 -721473 . DOI: 10.7527/S1000-6893.2017.721473

Abstract

Current air traffic flow management focuses mainly on making air traffic flow control measures, such as miles in trail, air holding, but lacks strategic consideration of the global operation law of the air traffic flow, air traffic flow delays formation and propagation, and holistic resolution programs. The air transportation network is a complicated network system, and it is necessary to study air traffic flow using complex network theories. The topological structure of the air traffic flow network is analyzed, such as degree, degree distribution, weight, weight distribution, flow, capacity and delay. The method for evaluating air traffic flow network efficiency is then proposed, and the invulnerability of the air traffic flow network is analyzed using selective attack and random attack. The model for air traffic delay propagation is established based on the similarity between the load capacity cascading failure model and the virus propagation model, and air traffic delay propagation. The research on the air traffic flow network structure and delay propagation are validated using a large number of actual data. The research can provide decision support for large scale air traffic flow management.

参考文献

[1] PIEN K, HAN K, SHANG W, et al. Robustness analysis of the European air traffic network[J]. Transportmetrica A Transport, 2015, 11(9): 772-792.
[2] CHEUNG D P, GUNES M H. A complex network analysis of the united states at transportation[C]//Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway, NJ: IEEE Press, 2012: 699-701.
[3] MEHTA V, PATEL F, GLINA Y, et al. Characterization of traffic and structure in the U.S. airport network[C]//2012 Conference on Intelligent Data Understanding, 2012: 124-129.
[4] XU Z, HARRISS R. Exploring the structure of the U.S. intercity passenger air transportation network: A weighted complex network approach[J]. GeoJournal, 2008, 73(2): 87-102.
[5] GUIDA M, MARIA F. Topology of the Italian airport network: A scale-free small-world network with a fractal structure[J]. Chaos, Solitons and Fractals, 2007, 31(3): 527-536.
[6] BAGLER G. Analysis of the airport network of India as a complex weighted network[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(12): 2972-2980.
[7] ZHANG J, CAO X B, DU W B, et al. Evolution of Chinese airport network[J]. Physica A, 2010, 389(18): 3922-3931.
[8] CAI K Q, ZHANG J, DU W B.et al. Analysis of the Chinese air route network as a complex network[J]. Chinese Physics B, 2012, 21(2): 028903.
[9] PALEARI S, REDONDI R,MALIGHETTI P. A comparative study of airport connectivity in China, Europe and US: Which network provides the best service to passengers?[J].Transportation Research Part E,2010,46(2):198-210.
[10] SCHAUM A, JAQUEZ R B. Estimating the state probability distribution for epidemic spreading in complex networks[J]. Applied Mathematics and Computation, 2016, 291:197-206.
[11] XU D G, XU X Y, YANG C H, et al. Spreading dynamics and synchronization behavior of periodic diseases on complex networks[J]. Physica A, 2017, 466: 544-551.
[12] DADLANIA A, KUMAR M S, MURUGAN S, et al. System dynamics of a refined epidemic model for infection propagation over complex networks[J]. IEEE System Journal, 2016, 10(4): 1316-1325.
[13] XU W, NI W, ZHENG K F, et al. Virus propagation modeling and convergence analysis in large-scale networks[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(10): 2241-2254.
[14] LIU W P, LIU C, YANG Z, et al. Modeling the propagation of mobile malware on complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 37: 249-264.
[15] GAN C Q, YANG X F, LIU W P, et al. Propagation of computer virus both across the internet and external computers: A complex-network approach[J].Communications in Nonlinear Science and Numerical Simulation, 2014, 19(8): 2785-2792.
[16] ZHANG C M, HUANG H T. Optimal control strategy for a novel computer virus propagation model on scale-free networks[J]. Physical A, 2016, 451: 251-265.
[17] CHEN D B, GAO H, LU L Y, et al. Identifying influential nodes in large-scale directed networks: The role of clustering[J]. Plos One, 2013, 8(10): 1-10.
[18] ZHANG W, BAI S Y, JIN R. The model of microblog message diffusion based on complex social network[J]. International Journal of Modern Physics B, 2014, 28(20):1450136.
[19] ZHU H M, YIN X C, MA J, et al. Identifying the main paths of information diffusion in online social networks[J]. Physica A, 2016, 452: 320-328.
[20] ZHANG B, HALANG W A. Understanding the cascading failures in Indian power grids with complex networks theory[J]. Physica A, 2013, 392(15): 3273-3280.
[21] CHANG L, WU Z G. Performance and reliability of electrical power grids under cascading failures[J]. Electrical Power and Energy Systems, 2011, 33(8): 1410-1419.
[22] BILIS E I, KROGER W, NAN C. Performance of electric power systems under physical malicious attacks[J]. IEEE Systems Journal, 2013, 7(4): 854-865.
[23] LATORA V,MARCHIORI M. Efficient behavior of smallworld networks[J]. Physical Review Lettes, 2001, 87(19): 198701.

文章导航

/